Online Encyclopedia

DENTISTRY (from Lat. dens, a tooth)

Online Encyclopedia
Originally appearing in Volume V08, Page 54 of the 1911 Encyclopedia Britannica.
Spread the word: it!
DENTISTRY (from Lat. dens, a tooth), a special department of medical science, embracing the structure, function and Historical therapeutics of the mouth and its contained organs, sketch. specifically the teeth, together with their surgical and prosthetic treatment. (For the anatomy of the teeth see TEETH.) As a distinct vocation it is first alluded to by Herodotus (500 B.C.). There are evidences that at an earlier date the Egyptians and Hindus attempted to replace lost teeth by attaching wood or ivory substitutes to adjacent sound teeth by means of threads or wires, but the gold fillings reputed to have been found in the teeth of Egyptian mummies have upon investigation been shown to be superficial applications of gold leaf for ornamental purposes. The impetus given to medical study in the Grecian schools by the followers of Aesculapius and especially Hippocrates (500 to 400 B.C.) developed among the practitioners of medicine and surgery considerable knowledge of dentistry. Galen (A.D. 131) taught that the teeth were true bones existing before birth, and to him is credited the belief that the upper canine teeth receive branches from the nerve which supplies the eye, and hence should be called " eye-teeth." Abulcasis (loth cent. A.D.) describes the operation by which artificial crowns are attached to adjacent sound teeth. Vesalius (1514), Ambroise Pare, J. J. Scaliger, T. Kerckring, M. Malpighi, and lesser anatomists of the same period contributed dissertations which threw some small amount of light upon the structure and functions of the teeth. The operation of transplanting teeth is usually attributed to John Hunter (1728-1793), who practised it extensively, and gave to it additional prominence by transplantinga human tooth to the comb of a cock, but the operation was alluded to by Ambroise Pare (1509-1590), and there is evidence to show that it was practised even earlier. A. von Leeuwenhoek in 1678 described with much accuracy the tubular structure of the dentine, thus making the most important contribution to the subject which had appeared up to that time. Until the latter part of the 18th century extraction was practically the only operation for the cure of toothache. The early contributions of France exerted a controlling influence upon the development of dental practice. Urbain Hemard, surgeon to the cardinal Georges of Armagnac, whom Dr Blake (1801) calls an ingenious surgeon and a great man, published in 1582 his Researches upon the Anatomy of the Teeth, their Nature and Properties. Of Hemard, M. Fauchard says: " This surgeon had read Greek and Latin authors, whose writings he has judiciously incorporated in his own works." In 1728 Fauchard, who has been called the father of modern dentistry, published his celebrated work, entitled Le Chirurgien Dentiste ou traite des dents. The preface contains the following statement as to the existing status of dental art and science in France, which might have been applied with equal truth to any other European country:—" The most celebrated surgeons having abandoned this branch of surgery, or having but little cultivated it, their negligence gave rise to a class of persons who, without theoretic knowledge or experience, and without being qualified, practised it at hazard, having neither principles nor system. It was only since the year 1700 that the intelligent in Paris opened their eyes to these abuses, when it was provided that those who intended practising dental surgery should submit to an examination by men learned in all the branches of medical science, who should decide upon their merits." After the publication of Fauchard's work the practice of dentistry became more specialized and distinctly separated from medical practice, the best exponents of the art being trained as apprentices by practitioners of ability, who had acquired their training in the same way from their predecessors. Fauchard suggested porcelain as an improvement upon bone and ivory for the manufacture of artificial teeth, a suggestion which he obtained from R. A. F. de Reaumur, the French savant and physicist, who was a contributor to the royal porcelain manufactory at Sevres. Later, Duchateau, an apothecary of St Germain, made porcelain teeth, and communicated his discovery to the Academy of Surgery in 1776, but kept the process secret. Du Bois Chemant carried the art to England, and the process was finally made public by M. Du Bois Foucou. M. Fonzi improved the art to such an extent that the Athenaeum of Arts in Paris awarded him a medal and crown (March 14, 1808). In Great Britain the 19th century brought the dawning of dental science. The work of Dr Blake in 18or on the anatomy of the teeth was distinctly in advance of anything previously written on the subject. Joseph Fox was one of the first members of the medical profession to devote himself exclusively to dentistry, and his work is a repository of the best practice of his time. The processes described, though comparatively crude, involve principles in use at the present time. Thomas Bell, the successor of Fox as lecturer on the structure and disease of the teeth at Guy's Hospital, published his well-known work in 1829. About this period numerous publications on dentistry made their appearance, notably those of Koecker, Johnson and Waite, followed somewhat later by the admirable work of Alexander Nasmyth (1839). By this time Cuvier, Serres, Rousseau, Bertin, Herissant and others in France had added to the knowledge of human and comparative dental anatomy, while M. G. Retzius, of Sweden, and E. H. Weber, J. C. Rosenmuller, Schreger, J. E. von Purkinje, B. Fraenkel and J. Muller in Germany were carrying forward the same lines of research. The sympathetic nervous relationships of the teeth with other parts of the body, and the interaction of diseases of the teeth with general pathological conditions, were clearly established. Thus a scientific foundation was laid, and dentistry came to be practised as a specialty of medicine. Certain minor operations, however, such as the extraction of teeth and the stopping of caries in an imperfect way, were still practised by barbers, and, the empirical practice of dentistry, especially of those operations which were almost wholly mechanical, had developed a considerable body of dental artisans who, though without medical education in many cases, possessed a high degree of manipulative skill. Thus there came to be two classes of practitioners, the first regarding dentistry as a specialty of medicine, the latter as a distinct and separate calling. In America representatives of both classes of dentists began to arrive from England and France about the time of the Revolution. Among these were John Wooffendale (1766), a student of Robert Berdmore of Liverpool, surgeon-dentist to George III.; James Gardette (1778), a French physician and surgeon; and Joseph Lemaire (1781), a French dentist who went out with the army of Count Rochambeau. During the winter of 1781–1782, while the Continental army was in winter quarters at Providence, Rhode Island, Lemaire found time and opportunity to practise his calling, and also to instruct one or two persons, notably Josiah Flagg, probably the first American dentist. Dental practice was thus established upon American soil, where it has produced such fertile results. Until well into the 19th century apprenticeship afforded the only means of acquiring a knowledge of dentistry. The profits derived from the, apprenticeship system fostered secrecy and quackery among many of the early practitioners; but the more liberal minded and better educated of the craft developed an increasing opposition to these narrow methods. In 1837 a local association of dentists was formed in New York, and in Course of 184o a national association, The American Society of training. Dental Surgeons, the object of which was " to advance the science by free communication and interchange of senti- ments." The first dental periodical in the world, The American Journal of Dental Science, was issued in June 1839, and in November 1840 was established the Baltimore College of Dental Surgery, the first college in the world for the systematic education of dentists. Thus the year 1839–1840 marks the birth of the three factors essential to professional growth in dentistry. All this, combined with the refusal of the medical schools to furnish the desired facilities for dental instruction, placed dentistry for the time being upon a footing entirely separate from general medicine. Since then the curriculum of study preparatory to dental practice has been systematically increased both as to its content and length, until in all fundamental principles it is practically equal to that required for the training of medical specialists, and in addition includes the technical subjects peculiar to dentistry. In England, and to some extent upon the continent, the old apprenticeship system is retained as an adjunct to the college course, but it is rapidly dying out, as it has already done in America. Owing to the regulation by law of the educational requirements, the increase of institutions devoted to the professional training of dentists has been rapid in all civilized countries, and during the past twenty years especially so in the United States. Great Britain possesses upwards of twelve institutions for dental instruction, France two, Germany and Switzerland six, all being based upon the conception that dentistry is a department of general medicine. In the United States there were in 1878 twelve dental schools, with about 70o students; in 1907 there were fifty-seven schools, with 6919 students. Of these fifty-seven schools, thirty-seven are depart- ments of universities or of medical institutions, and there is a growing tendency to regard dentistry from its educational aspect as a special department of the general medical and surgical practice. Recent studies have shown that besides being an important part of the digestive system, the mouth sustains intimate re- lationship with the general nervous system, and is important as the portal of entrance for the majority of the bacteria that cause specific diseases. This fact has rendered more intimate the relations between dentistry and the general practice of medicine, and has given a powerful impetus to scientific studies in dentistry. Through the researches of Sir J. Tomes, Mummery, Research. Hopewell Smith, Williams and others in England, O. Hertwig, Weil and Rose in Germany, Andrews, Sudduth and Black in America, the minute anatomy and embryology of the dental tissues have been worked out with great fulness and precision. In particular, it has been demonstrated that certain general systemic diseases have a distinct oral expression. Through their extensive nervous connexions with the largest of the cranial nerves and with the sympathetic nervous system, the teeth frequently cause irritation resulting in profound reflex nervous phenomena, which are curable only by removal of the local tooth disorder. Gout, lithaemia, scurvy, rickets, lead and mercurial poisoning, and certain forms of chronic nephritis, produce dental and oral lesions which are either pathognomonic or strongly indicative of their several constitutional causes, and are thus of great importance in diagnosis. The most important dental re-search of modern times is that which was carried out by Professor W. D. Miller of Berlin (1884) upon the cause of caries of the teeth, a disease said to affect the human race more extensively than any other. Miller demonstrated that, as previous observers had suspected, caries is of bacterial origin, and that acids play an important role in the process. The disease is brought about by a group of bacteria which develop in the mouth, growing naturally upon the debris of starchy or carbohydrate food, producing fermentation of the mass, with lactic acid as the end product. The lactic acid dissolves the mineral constituent of the tooth structure, calcium phosphate, leaving the organic matrix of the tooth exposed. Another class of germs, the peptonising and putrefactive bacteria, then convert the organic matter into liquid or gaseous end products. The accuracy of the conclusions obtained from his analytic research was synthetically proved, after the manner of Koch, by producing the disease artificially. Caries of the teeth has been shown to bear highly important relation to more remote or systemic diseases. Exposure and death of the dental pulp furnishes an avenue of entrance for disease-producing bacteria, by which invasion of the deeper tissues may readily take place, causing necrosis, tuberculosis, actinomycosis, phlegmon and other destructive inflammations, certain of which, affecting the various sinuses of the head, have been found to cause meningitis, chronic empyema, metastatic abscesses in remote parts of the body, paralysis, epilepsy and insanity. Operative Dentistry.—The art of dentistry is usually divided arbitrarily into operative dentistry, the purpose of which is to preserve as far as possible the teeth and associated tissues, and prosthetic dentistry, the purpose of which is to supply the loss of teeth by artificial substitutes. The filling of carious cavities was probably first performed with lead, sug- Fttltng or stopping. gested apparently by an operation recorded by Celsus (100 B.C.), who recommended that frail or decayed teeth be stuffed with lead previous to extraction, in order that they might not break under the forceps. The use of lead as a filling was sufficiently prevalent in France during the 17th century to bring into use the word plombage, which is still occasionally applied in that country to the operation of filling. Gold as a filling material came into general use about the beginning of the 19th century.' The earlier preparations of gold were so impure as to be virtually without cohesion, so that they were of use only in cavities which had sound walls for its retention. In the form of rolls or tape it was forced into the previously cleaned and prepared cavity, condensed with instruments under heavy hand pressure, smoothed with files, and finally burnished. Tin foil was also used to a limited extent and by the same method. Improvements in the refining of gold for dental use brought the product to a fair degree of purity, and, about 1855, led to the invention by Dr Robert Arthur of Baltimore of a method by which it could be welded firmly within the cavity. The cohesive properties of the foil were developed by passing it through an alcohol flame, which dispelled its surface contaminations. The gold was then welded piece by piece into a homogeneous mass by plugging instruments with serrated points. In this process of cold-welding, the mallet, hitherto in only limited use, was found more efficient than hand pressure, and was rapidly developed. The primitive mallet of wood, ivory, lead or steel, was supplanted by a mallet in which ' The filling of teeth with gold foil is recorded in the oldest known book on dentistry, Artzney Buchlein, published anonymously in 153o, in which the operation is quoted from Mesue (A.D. 857), physician to the caliph Haroun al-Raschid. a hammer was released automatically by a spring condensed by pressure of the operator's hand. Then followed mallets operated by pneumatic pressure, by the dental engine, and finally by the electro-magnet, as utilized in 1867 by Bonwill. These devices greatly facilitated the operation, and made possible a partial or entire restoration of the tooth-crown in conformity with anatomical lines. The dental engine in its several forms is the outgrowth of the simple drill worked by the hand of the operator. It is used in removing decayed structure and for shaping the cavity for inserting the filling. From time to time its usefulness has been extended, so that it is now used for finishing fillings and polishing them, for polishing the teeth, removing deposits from them and changing their shapes. Its latest development, the dento-surgical engine, is of heavier construction and is adapted to operations upon all of the bones, a recent addition to its equipment being the spiral osteotome of Cryer, by which, with a minimum shock to the patient, fenestrae of any size or shape in the brain-case may be made, from a simple trepanning operation to the more extensive openings required in intra-cranial operations. The rotary power may be supplied by the foot of the operator, or by hydraulic or electric motors. The rubber dam invented by S. C. Barnum of New York (1864) provided a means for protecting the field of operations from the oral fluids, and extended the scope of operations even to the entire restoration of tooth-crowns with cohesive gold foil. Its value has been found to be even greater than was at first anticipated. In all operations involving the exposed dental pulp or the pulp-chamber and root-canals, it is the only efficient method of mechanically protecting the field of operation from invasion by disease-producing bacteria. The difficulty and annoyance attending the insertion of gold, its high thermal conductivity, and its objectionable colour have led to an increasing use of amalgam, guttapercha, and cements of zinc oxide mixed with zinc chloride or phosphoric acid. Recently much attention has been devoted to restorations with porcelain. A piece of platinum foil of •oo1 inch thickness is burnished and pressed into the cavity, so that a matrix is produced exactly fitting the cavity. Into this matrix is placed a mixture of powdered porcelain and water or alcohol, of the colour to match the tooth. The mass is carefully dried and then fused until homogeneous. Shrinkage is counteracted by additions of porcelain powder, which are repeatedly fused until the whole exactly fills the matrix. After cooling, the matrix is stripped away and the porcelain is cemented into the cavity. When the cement has hardened, the surface of the porcelain is ground and polished to proper contour. If successfully made, porcelain fillings are scarcely noticeable. Their durability remains to be tested. Until recent times the exposure of the dental pulp inevitably led to its death and disintegration, and, by invasion of bacteria via the pulp canal, set up an inflammatory process which eventually caused the loss of the entire tooth. A rational system of therapeutics, in conjunction with proper antiseptic measures, has made possible both the conservative treatment of the dental pulp when exposed, and the successful treatment of pulp-canals when the pulp has been devitalized either by design or disease. The conservation of the exposed pulp is affected by the operation of capping. In capping a pulp, irritation is allayed by antiseptic and sedative treatment, and a metallic cap, lined with a non-irritant sedative paste, is applied under aseptic conditions immediately over the point of pulp exposure. A filling of cement is superimposed, and this, after it has hardened, is covered with a metallic or other suitable filling. The utility of arsenious acid for devitalizing the dental pulp was discovered by J. R. Spooner of Montreal, and first published in 1836 by his brother Shearjashub in his Guide to Sound Teeth. The painful action of arsenic upon the pulp was avoided by the addition of various sedative drugs,—morphia, atropia, iodoform, &c.,—and its use soon became universal. Of late years it is being gradually supplanted by immediate surgical extirpation under the benumbing effect of cocaine salts. By the use of cocaine also the pain incident to excavating and shaping of cavities in tooth structure may be controlled, especially when the cocaine is driven into the dentine by means of an electric current. To fill the pulp-chamber and canals of teeth after loss of the pulp, all organic remains of pulp tissue should be removed by sterilization, and then, in order to prevent the entrance of bacteria, and consequent infection, the canals should be perfectly filled. Upon the exclusion of infection depends the- future integrity and comfort of the tooth. Numberless methods have been invented for the operation. Pulpless teeth are thus pre-served through long periods of usefulness, and even those remains of teeth in which the crowns have been lost are rendered comfortable and useful as supports for artificial crowns, and as abutments for assemblages of crowns, known as bridge-work. The discoloration of the pulpless tooth through putrefactive changes in its organic matter were first overcome by bleaching it with chlorine. Small quantities of calcium hypochlorite are packed into the pulp-chamber and moistened with dilute acetic acid; the decomposition of the calcium salt liberates chlorine in situ, which restores the tooth to normal colour in a short time. The cavity is afterwards washed out, carefully dried, lined with a light-coloured cement and filled. More efficient bleaching agents of recent introduction are hydrogen dioxide in a 25% solution or a saturated solution of sodium peroxide; they are less irritating and much more convenient in application. Unlike chlorine, these do not form soluble metallic salts which may subsequently discolour the tooth. Hydrogen dioxide may be carried into the tooth structure by the electric current. In which case a current of not less than forty volts controlled by a suitable graduated resistance is applied with the patient in circuit, the anode being a platinum-pointed electrode in contact with the dioxide solution in the tooth cavity, and the cathode a sponge or plate electrode in contact with the hand or arm of the patient. The current is gradually turned on until two or three milliamperes are indicated by a suitable ammeter. The operation requires usually twenty to thirty minutes. Mal.posed teeth are not only unsightly but prone to disease, and may be the cause of disease in other teeth, or of the associated tissues. The impairment of function which their abnormal position causes has been found to be the primary cause of disturbances of the general bodily health; for example, enlarged tonsils, chronic pharyngitis and nasal catarrh, indigestion and malnutrition. By the use of springs, screws, vulcanized caoutchouc bands, elastic ligatures, &c., as the case may require, practically all forms of dental irregularity maybe corrected, even such protrusions and retrusions of the front teeth as cause great disfigurement of the facial contour. The extraction of teeth, an operation which until quite recent times was one of the crudest procedures in minor surgery, has been reduced to exactitude by improved instruments, designed with reference to the anatomical relations of 6xtrac. floe. the teeth and their alveoli, and therefore adapted to the several classes of teeth. The operation has been rendered painless by the use of anaesthetics. The anaesthetic generally employed is nitrous oxide, or laughing-gas, the use of which was discovered in 1844 by Horace Wells, a dentist of Hartford, Conn., U.S.A. Chloroform and ether, as well as other general anaesthetics, have been employed in extensive operations because of their more pro-longed effect; but chloroform, especially, is dangerous, owing to its effect upon the heart, which in many instances has suddenly failed during the operation. Ether, while less manageable than nitrous oxide, has been found to be practically devoid of danger. The local injection of solutions of cocaine and allied anaesthetics into the gum-tissue is extensively practised; but is attended with danger, from the toxic effects of an overdose upon the heart, and the local poisonous effect upon the tissues, which lead in numerous cases to necrosis and extensive sloughing. Dental Prosthesis.—The fastening of natural teeth or carved substitutes to adjoining sound teeth by means of thread or wire preceded their attachment to base-plates of carved Artinclal wood, bone or ivory, which latter method was practised teeth. until the introduction of swaged metallic plates. Where the crown only of a tooth or those of several teeth were lost, the Dental therapeutics. restoration was effected by engrafting upon the prepared root a suitable crown by means of a wooden or metallic pivot. When possible, the new crown was that of a corresponding sound tooth taken from the mouth of another individual; otherwise an artificial crown carved from bone or ivory, or sometimes from the tooth of an ox, was used. To replace entire dentures a base-plate of carved hippopotamus ivory was constructed, upon which were mounted the crowns of natural teeth, or later those of porcelain. The manufacture of a denture of this character was tedious and uncertain, and required much skill. The denture. was kept in place by spiral springs attached to the buccal sides of the appliance above and below, which caused pressure upon both jaws, necessitating a constant effort upon the part of the unfortunate wearer to keep it in place. Metallic swaged plates were introduced in the latter part of the 18th century. An impression of the gums was taken in wax, from which a cast was made in plaster of Paris. With this as a model, a metallic die of brass or zinc was prepared, upon which the plate of gold or silver was formed, and then swaged into contact with the die by means of a female die or counter-die of lead. The process is essentially the same to-day, with the addition of numerous improvements in detail, which have brought it to a high degree of perfection. The discovery, by Gardette of Philadelphia in 1800, of the utility of atmospheric pressure in keeping artificial dentures in place led to the abandonment of spiral springs. A later device for enhancing the stability is the vacuum chamber, a central depression in the upper surface of the plate, which, when exhausted of air by the wearer, materially increases the adhesion. The metallic base-plate is used also for supporting one or more artificial teeth, being kept in place by metallic clasps fitting to, and` partially surrounding, adjacent sound natural teeth, the plate merely covering the edentulous portion of the alveolar ridge. It may also be kept in place by atmospheric adhesion, in which case the palatal vault is included, and the vacuum chamber is utilized in the palatal portion to increase the adhesion. In the construction usually practised, porcelain teeth are attached to a gold base-elate by means of stay-pieces of gold, perforated to receive the platinum pins baked in the body of the tooth. The stay-pieces or backings are then soldered to the pins and to the plate by means of high-fusing gold solder. The teeth used may be single or in sections, and may be with or without an extension designed in form and colour to imitate the gum of the aveolar border. Even when skillfully executed, the process is imperfect in that the jointing of the teeth to each other, and their adaptation to the base-plate, leaves crevices and recesses, in which food debris and oral secretions accumulate. To obviate these defects the enamelled platinum denture was devised. Porcelain teeth are first attached to a swaged base-plate of pure platinum by a stay-piece of the same metal soldered with pure gold, after which the interstices between the teeth are filled, and the entire surface of the plate, excepting that in contact with the palate and alveolar border, is covered with a porcelain paste called the body, which is modelled to the normal contour of the gums, and baked in a muffle furnace until vitrified. It is then enamelled with a vitreous enamel coloured in imitation of the colour of the natural gum, which is applied and fired as before, the result being the most artistic and hygienic denture known. This is commonly known as the continuous gum method. Originating in France in the early part of the 19th century, and variously improved by several experimenters, it was brought to its present perfection by. Dr John Allen of New York about 1846-1847. Dentures supported upon cast bases of metallic alloys and of aluminium have been employed as substitutes for the more expensive dentures of gold and platinum, but have had only a limited use, and are less satisfactory. Metallic bases were used exclusively as supports for artificial dentures until in 1855–1856 Charles Goodyear, jun., patented in England a process for constructing a denture upon vulcanized caoutchouc as a base. Several modifications followed, each the subject of patented improvements. Though the cheapness and simplicity of the vulcanite base has led to its abuse in incompetent hands, it has on the whole been productive of muchbenefit. It has been used with great success as a means of attaching porcelain teeth to metallic bases of gold, silver and aluminium. It is extensively used also in correcting irregular positions of the teeth, and for making interdental splints in the treatment of fractures of the jaws. For the mechanical correction of palatal defects causing imperfection of deglutition and speech, which comes distinctly within the province of the prosthetic dentist, the vulcanite base produces the best-known apparatus. Two classes of palatal mechanism are recognized—the obturator, a palatal plate, the function of which is to close perforations or clefts in the hard palate, and the artificial velum, a movable attachment to the obturator or palatal plate, which closes the opening in the divided natural velum and, moving with it, enables the wearer to close off the nasopharynx from the oral cavity in the production of the guttural sounds. Vulcanite is also used for extensive restorations of the jaws after surgical operations or loss by disease, and in the majority of instances wholly corrects the deformity. For a time vulcanite almost supplanted gold and silver as a base for artificial denture, and developed a generation of practitioners deficient in that high degree of skill necessary to the construction of dentures upon metallic bases. The recent development of crown-and-bridge ' work methods. has brought about a renaissance, so that a thorough training is more than ever necessary to successful practice in mechanical dentistry. The simplest crown is of porcelain, and is engrafted upon a sound natural tooth-root by means of a metallic pin of gold or platinum, extending into the previously enlarged root-canal and cemented in place. In another type of crown the point between the root-end and the abutting crown-surface is encircled with a metallic collar or band, which gives additional security to the attachment and protects the joints from fluids or bacteria. Crowns of this character are constructed with a porcelain facing attached by a stay-piece or backing of gold to a plate and collar, which has been previously fitted to the root-end like a ferrule, and soldered to a pin which projects through the ferrule into the root-canal. The contour of the lingual surface of the crown is made of gold, which is shaped to conform to the anatomical lines of the tooth. The shell-crown consists of a reproduction of the crown entirely of gold plate, filled with cement, and driven over the root-end, which it closely encircles. The two latter kinds of crowns may be used as abutments for the support of intervening crowns in constructing bridge-work. When artificial crowns are supported not by natural tooth-roots but by soldering them to abutments, they are termed dummies. The number of dummies which may be supported upon a given number of roots depends upon the position and character of the abutments, the character of the alveolar tissues, the age, sex and health of the patient, the character of the occlusion or bite, and the force exerted in mastication. In some cases a root will not properly support more than one additional crown; in others an entire bridge denture has been successfully supported upon four well-placed roots. Two general classes of bridge-work are recognized, namely, the fixed and the removable. Removable bridge-work, though more difficult to construct, is preferable, as it can be more thoroughly and easily cleansed. When properly made and applied to judiciously selected cases, the bridge denture is the most artistic and functionally perfect restoration of prosthetic dentistry. The entire development of modern dentistry dates from the 19th century, and mainly from its latter half. Beginning with a few practitioners and no organized professional basis, educational system or literature, its practitioners are to be found in all civilized communities, those in Great Britain numbering about 5000; in the United States, 27,000; France, 1600, of whom 376 are graduates; German Empire, qualified practitioners (Zahndrzie), 1400; practitioners without official qualification, 4100. Its educational institutions are numerous and well equipped. It possesses a large periodical and standard literature in all languages. Its practice is regulated by legislative enactment in all countries the same as is medical practice. The business of manufacturing and selling dentists' supplies represents an enormous industry, in which millions of capital are invested.
End of Article: DENTISTRY (from Lat. dens, a tooth)
DENTIL (from Lat. dens, a tooth)

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.