Online Encyclopedia


Online Encyclopedia
Originally appearing in Volume V09, Page 183 of the 1911 Encyclopedia Britannica.
Spread the word: it!
FIRST PERIOD.—Gilbert was probably led to study the phenomena of the attraction of iron by the lodestone in consequence of his conversion to the Copernican theory of the earth's motion, and thence proceeded to study the attractions produced by amber. An account of his electrical discoveries is given in the De magnete, lib. ii. cap. 2.2 He invented the versorium or 1 Gilbert's work, On the Magnet, Magnetic Bodies and the Great Magnet, the Earth, has been translated from the rare folio Latin edition of i600, but otherwise reproduced in its original form by the chief members of the Gilbert Club of England, with a series of valuable notes by Prof. S. P. Thompson (London, 1900). See also The Electrician, February 21, 1902. 2 See The Intellectual Rise in Electricity, ch. x., by Park Benjamin (London, 1895).electrical needle and proved that innumerable bodies he called electrica, when rubbed, can attract the needle of the. versorium (see ELECTROSCOPE). Robert Boyle added many new facts and gave an account of them in his book, The Origin of Electricity. He showed that the attraction between the rubbed body and the test object is mutual. Otto von Guericke (1602-1686) constructed the first electrical machine with a revolving ball of sulphur (see ELECTRICAL MACHINE), and noticed that light objects were repelled after being attracted by excited electrics. Sir Isaac Newton substituted a ball of glass for sulphur in the electrical machine and made other not unimportant additions to electrical knowledge. Francis Hawksbee (d. 1713) published in his book Physico-Mechanical Experiments (1709), and in several Memoirs in the Phil. Trans. about 1707, the results of his electrical inquiries. He showed that light was produced when mercury was shaken up in a glass tube exhausted of its air. Dr Wall observed the spark and crackling sound when warm amber was rubbed, and compared them with thunder and lightning (Phil. Trans., 1708, 26, p. 69). Stephen Gray (1696–1736) noticed in 1720 that electricity could be excited by the friction of hair, silk, wool, paper and other bodies. In 1729 Gray made the important discovery that some bodies were conductors and others non-conductors of electricity. In conjunction with his friend Granville Wheeler (d. 1770), he conveyed the electricity from rubbed glass, a distance of 886 ft., along a string supported on silk threads (Phil. Trans., 1735–1736, 39, pp. 16, 166 and 400). Jean Theophile Desaguliers (1683–1744) announced soon after that electrics were non-conductors, and conductors were nonelectrics. C. F. de C. du Fay (1699–1739) made the great discovery that electricity is of two kinds, vitreous and resinous (Phil. Trans., 1733, 38, p. 263), the first being produced when glass, crystal, &c. are rubbed with silk, and the second when resin, amber, silk or paper, &c. are excited by friction with flannel. He also discovered that a body charged with positive or negative electricity repels a body free to move when the latter is charged with electricity of like sign, but attracts it if it is charged with electricity of opposite sign, i.e. positive repels positive and negative repels negative, but positive attracts negative. It is to du Fay also that we owe the abolition of the distinction between electrics and non-electrics. He showed that all substances could be electrified by friction, but that to electrify conductors they must be insulated or supported on non-conductors. Various improvements were made in the electrical machine, and thereby experimentalists were provided with the means of generating strong electrification; C. F. Ludolff (1707–1763) of Berlin in 1744 succeeded in igniting ether with the electric spark (Phil. Trans., 1744, 43, p. 167). For a very full list of the papers and works of these early electrical philosophers, the reader is referred to the bibliography on Electricity in Dr Thomas Young's Natural Philosophy, vol. ii. p. 415. In 1745 the important invention of the Leyden jar or condenser was made by E. G. von Kleist of Kammin, and almost simultaneously by Cunaeus and Pieter van Musschenbroek (1692–1761) of Leiden (see LEYDEN JAR). Sir William Watson (1715–1787) in England first observed the flash of light when a Leyden jar is discharged, and he and Dr John Bevis (1695–1771) suggested coating the jar inside and outside with tinfoil. Watson carried out elaborate experiments to discover how far the electric discharge of the jar could be conveyed along metallic wires and was able to accomplish it for a distance of 2 m., making the important observation that the electricity appeared to be transmitted instantaneously. Franklin's .Researches.—Benjamin Franklin (1706–1790) was one of the great pioneers of electrical science, and made the ever-memorable experimental identification of lightning and electric spark. He argued that electricity is not created by friction, but merely collected from its state of diffusion through other matter by which it is attracted. He asserted that the glass globe, when rubbed, attracted the electrical fire, and took it from the rubber, the same globe being disposed, when the friction ceases, to give out its electricity to any body which has less. In the case of the charged Leyden jar, he asserted that the inner coating of tinfoil had received more than its ordinary quantity of electricity, and was therefore electrified positively, or plus, while the outer coating of tinfoil having had its ordinary quantity of electricity diminished, was electrified negatively, or minus. Hence the cause of the shock and spark when the jar is discharged, or when the superabundant or plus electricity of the inside is transferred by a conducting body to the defective or minus electricity of the outside. This theory of the Leyden phial Franklin supported very ingeniously by showing that the outside and the inside coating possessed electricities of opposite sign, and that, in charging it, exactly as much electricity is added on one side as is subtracted from the other. The abundant discharge of electricity by points was observed by Franklin is his earliest experiments, and also the power of points to conduct it copiously from an electrified body. Hence he was furnished with a simple method of collecting electricity from other bodies, and he was enabled to perform those remarkable experiments which are chiefly connected with his name. Hawksbee, Wall and J. A. Nollet (1700-1770) had successively suggested the identity of lightning and the electric spark, and of thunder and the snap of the spark. Previously to the year 1750, Franklin drew up a statement, in which he showed that all the general phenomena and effects which were produced by electricity had their counter-parts in lightning. After waiting some time for the erection of a spire at Philadelphia, by means of which he hoped to bring down the electricity of a thunderstorm, he conceived the idea of sending up a kite among thunder-clouds. With this view he made a small cross of two small light strips of cedar, the arms being sufficiently long to reach to the four corners of a large thin silk handkerchief when extended. The corners of the handkerchief were tied to the extremities of the cross, and when the body of the kite was thus formed, a tail, loop and string were added to it. The body was made of silk to enable it to bear the violence and wet of a thunderstorm. A very sharp pointed wire was fixed at the top of the upright stick of the cross, so as to rise a foot or more above the wood. A silk ribbon was tied to the end of the twine next the hand, and a key suspended at the junction of the twine and silk. In company with his son, Franklin raised the kite like a common one, in the first thunderstorm, which happened in the month of June 1752. To keep the silk ribbon dry, he stood within a door, taking care that the twine did not touch the frame of the door; and when the thunder-clouds came over the kite he watched the state of the string. A cloud passed without any electrical indications, and he began to despair of success. At last, however, he saw the loose filaments of the twine standing out every way, and he found them to be attracted by the approach of his finger. The suspended key gave a spark on the application of his knuckle, and when the string had become wet with the rain the electricity became abundant. A Leyden jar was charged at the key, and by the electric fire thus obtained spirits were inflamed, and many other experiments performed which had been formerly made by excited electrics. In subsequent trials with another apparatus, he found that the clouds were sometimes positively and sometimes negatively electrified, and so demonstrated the perfect identity of lightning and electricity. Having thus succeeded in drawing the electric fire from the clouds, Franklin conceived the idea of protecting buildings from lightning by erecting on their highest parts pointed iron wires or conductors communicating with the ground. The electricity of a hovering or a passing cloud would thus be carried off slowly and silently; and if the cloud was highly charged, the lightning would strike in preference the elevated conductors.' The most important of Franklin's electrical writings are his Experiments and Observations on Electricity made at Philadelphia, 1751-1754; his Letters on Electricity; and various memoirs and letters in the Phil. Trans. from 1756 to 1760. About the same time that Franklin was making his kite 1 See Sir Oliver Lodge, " Lightning, Lightning Conductors and Lightning Protectors," Journ. Inst. Elec. Eng. (1889), 18, p. 386, and the discussion on the subject in the same volume; also the book by the same author on Lightning Conductors and Lightning Guards (London, 1892).experiment in America, T. F. Dalibard (1703-1779) and others in France had erected a long iron rod at Marli, and obtained results agreeing with those of Franklin. Similar investigations were pursued by many others, among whom Father G. B. Beccaria (1716-1781) deserves especial mention. John Canton (1718-1772) made the important contribution to knowledge that electricity of either sign could be produced on nearly any body by friction with appropriate substances, and that a rod of glass roughened on one half was excited negatively in the rough part and positively in the smooth part by friction with the same rubber. Canton first suggested the use of an amalgam of mercury and tin for use with glass cylinder electrical machines to improve their action. His most important discovery, however, was that of electrostatic induction, the fact that one electrified body can produce charges of electricity upon another insulated body, and that when this last is touched it is left electrified with a charge of opposite sign to that of the inducing charge (Phil. Trans., 1753-1754). We shall make mention lower down of Canton's contributions to electrical theory. Robert Symmer (d. 1763) showed that quite small differences determined the sign of the electrification that was generated by the friction of two bodies one against the other. Thus wearing a black and a white silk stocking one over the other, he found they were electrified oppositely when rubbed and drawn off, and that such a rubbed silk stocking when deposited in a Leyden jar gave up its electrification to the jar (Phil. Trans., 1759). Ebenezer Kinnersley (1711-1778) of Philadelphia made useful observations on the elongation and fusion of iron wires by electrical discharges (Phil. Trans., 1763). A contemporary of Canton and co-discoverer with him of the facts of electrostatic induction was the Swede, Johann Karl Wilcke (1732-1796), then resident in Germany, who in 1762 published an account of experiments in which a metal plate held above the upper surface of a glass table was subjected to the action of a charge on an electrified metal plate held below the glass (Kon. Schwedische Akad. Abhandl., 1762, 24, p. 213). Pyro-electricity.—The subject of pyro-electricity, or the power possessed by some minerals of becoming electrified when merely heated, and of exhibiting positive and negative electricity, now began to attract notice. It is, possible that the lyncurium of the ancients, which according to Theophrastus attracted light bodies, was tourmaline, a mineral found in Ceylon, which had been christened by the Dutch with the name of aschcntrikker, or the attractor of ashes. In 1717 Louis Lemery exhibited to the Paris Academy of Sciences a stone from Ceylon which attracted light bodies; and Linnaeus in mentioning his experiments gives the stone the name of lapis electricus. Giovanni Caraffa, duca di Noja (1715-1768), was led in 1758 to purchase some of the stones called tourmaline in Holland, and, assisted by L. J. M. Daubenton and Michel Adanson, he made a series of experiments with them, a description of which he gave in a letter to G. L. L. Buffon in 1759. The subject, however, had already engaged the attention of the German philosopher, F. U. T. Aepinus, who published an account of them in 1756. Hitherto nothing had been said respecting the necessity of heat to excite the tourmaline; but it was shown by Aepinus that a temperature between 99zo and 212° Fahr. was requisite for the development of its attractive powers. Benjamin Wilson (Phil. Trans., 1763, &c.), J. Priestley, and Canton continued the investigation, but it was reserved for the Abbe Hauy to throw a clear light on this curious branch of the science (Traits de mineralogie, 1801). He found that the electricity of the tourmaline decreased rapidly from the summits or poles towards the middle of the crystal, where it was imperceptible; and he discovered that if a tourmaline is broken into any number of fragments, each fragment, when excited, has two opposite poles. Hauy discovered the same property in the Siberian and Brazilian topaz, borate of magnesia, mesotype, prehnite, sphene and calamine. He also found that the polarity which minerals receive from heat has a relation to the secondary forms of their crystals—the tourmaline, for example, having its resinous pole at the summit of the crystal which has three faces. In the other pyro-electric crystals above mentioned, Hauy detected the same deviation from the rules of symmetry in their, secondary crystals which occurs in tourmaline. C. P. Brard (1788–1838) discovered that pyro-electricity was a property of axinite; and it was afterwards detected in other minerals. In repeating and extending the experiments of Hauy much later, Sir David Brewster discovered that various artificial salts were pyro-electric, and he mentions the tartrates of potash and soda and tartaric acid as exhibiting this property in a very strong degree. He also made many experiments with the tourmaline when cut into thin slices, and reduced to the finest powder, in which state each particle preserved its pyro-electricity; and he showed that scolezite and mesolite, even when deprived of their water of crystallization and reduced to powder, retain their property of becoming electrical by heat. When this white powder is heated and stirred about by any substance whatever, it collects in masses like new-fallen snow, and adheres to the body with which it is stirred. For Sir David Brewster's work on pyro-electricity, see Trans. Roy. Soc. Edin., 1845, also Phil. Mag., Dec. 1847. The reader will also find a full discussion on the subject in the Treatise on Electricity, by A. de la Rive, translated by C. V. Walker (London, 1856), vol. it. part v. ch. i. Animal electricity.—The observation that certain animals could give shocks resembling the shock of a Leyden jar induced a closer examination of these powers. The ancients were acquainted with the benumbing power of the torpedo-fish, but it was not till 1676 that modern naturalists had their attention again drawn to the fact. E. Bancroft was the first person who distinctly suspected that the effects of the torpedo were electrical. In 1773 John Walsh (d. 1795) and Jan Ingenhousz (1730—1799) proved by many curious experiments that the shock of the torpedo was an electrical one (Phil. Trans., 1773–1775); and John Hunter (id. 1773, 1775) examined and described the anatomical structure of its electrical organs. A. von Humboldt and Gay-Lussac (Ann. Chim., 1805), and Etienne Geoffroy Saint-Hilaire (Gilb. Ann., 1803) pursued the subject with success; and Henry Cavendish (Phil. Trans., 1776) constructed an artificial torpedo, by which he imitated the actions of the living animal. The subject was also investigated (Phil. Trans., 1812, 1817) by Dr T. J. Todd (1789-1840), Sir Humphry Davy (id. 1829), John Davy (id. 1832, 1834, 1841) and Faraday (Exp. Res., vol. ii.). The power of giving electric shocks has been discovered also in the Gymnotus electricus (electric eel), the Malapterurus electricus, the Trichiurus electricus, and the Tetraodon electricus. The most interesting and the best known of these singular fishes is the Gymnotus or Surinam eel. Humboldt gives a very graphic account of the combats which are carried on in South America between the gymnoti and the wild horses in the vicinity of Calabozo. Cavendish's Researches.—The work of Henry Cavendish (1731–181o) entitles him to a high place in the list of electrical investigators. A considerable part of Cavendish's work was rescued from oblivion in 1879 and placed in an easily accessible form by Professor Clerk Maxwell, who edited the original manuscripts in the possession of the duke of Devonshire.' Amongst Cavendish's important contributions were his exact measurements of electrical capacity. The leading idea which distinguishes his work from that of his predecessors was his use of the phrase " degree of electrification " with a clear scientific definition which shows it to be equivalent in meaning to the modern term " electric potential." Cavendish compared the capacity of different bodies with those of conducting spheres of known diameter and states these capacities in " globular inches," a globular inch being the capacity of a sphere x in.'in diameter. Hence his measurements are all directly comparable with modern electrostatic measurements in which the unit of capacity is that of a sphere 1 centimetre in radius. Cavendish measured the capacity of disks and condensers of various forms, and proved that the capacity of a Leyden pane is proportional to the surface of the tinfoil and inversely as the thickness of the glass. In connexion with this subject he anticipated one of Faraday's 1 The Electrical Researches of the Hon. Henry Cavendish 1771-!q81, edited from the original manuscripts by J. Clerk Maxwell, F.R.S. (Cambridge, 1879).greatest discoveries, namely, the effect of the dielectric or insulator upon the capacity of a condenser formed with it, in other words, made the discovery of specific inductive capacity (see Electrical Researches, p. 183). He made many measurements of the electric conductivity of different solids and liquids, by comparing the intensity of the electric shock taken through his body and various conductors. He seems in this way to have educated in himself a, very precise " electrical sense," making use of his own nervous system as a kind of physiological galvanometer. One of the most important investigations hay made in this way was to find out, as he expressed it, " what power of the velocity the resistance is proportional to." Cavendish meant by the term velocity " what we now call the current, and by " resistance," the electromotive force which maintains the current. By various experiments with liquids in tubes he found this power was nearly unity. This result thus obtained by Cavendish in January 1781, that the current varies in direct proportion to the electromotive force, was really an anticipation of the fundamental law of electric flow, discovered independently by G. S. Ohm in 1827, and since known as Ohm's Law. Cavendish also enunciated in 1776 all the laws of division of electric current between circuits in parallel, although they are generally supposed to have been first given by Sir C. Wheatstone. Another of his great investigations was the determination of the law according to which electric force varies with the distance. Starting from the fact that if an electrified globe, placed within two hemispheres which fit over it without touching, is brought in contact with these hemispheres, it gives up the whole of its charge to them—in other words, that the charge on an electrified body is wholly on the surface—he was able to deduce by most ingenious reasoning the law that electric force varies inversely as the square of the distance. The accuracy of his measurement, by which he established within 2% the above law, was only limited by the sensibility, or rather insensibility, of the pith ball electrometer, which was his only means of detecting the electric charge .2 In the accuracy of his quantitative measurements and the range of his researches and his combination of mathematical and physical knowledge, Cavendish may not inaptly be described as the Kelvin of the 18th century. Nothing but his curious in-difference to the publication of his work prevented him from securing earlier recognition for it. Coulomb's Work.—Contemporary with Cavendish was C. A. Coulomb (1736–18o6),,,who in France addressed himself to the same kind of exact quantitative work as Cavendish in England. Coulomb has made his name for ever famous by his invention and application of his torsion balance to the experimental verification of the fundamental law of electric attraction, in which, however, he was anticipated by Cavendish, namely, that the force of attraction betweemtwo small electrified spherical bodies varies as the product of their charges and inversely as the square of the distance of their centres. Coulomb's work received better publication than Cavendish's at the time of its accomplishment, and provided a basis on which mathematicians could operate. Accordingly the close of the 18th century drew into the arena of electrical investigation on its mathematical side P. S. Laplace, J. B. Biot, and above all, S. D. Poisson. Adopting the hypothesis of two fluids, Coulomb investigated experimentally and theoretically the distribution of electricity on the surface of bodies by means of his proof plane. He determined the law of distribution between two conducting bodies in contact; and measured with his proof plane the density of the electricity at different points of two spheres in contact, and enunciated an important law. He ascertained the distribution of electricity among several spheres (whether equal or unequal) placed in contact in a straight line; and he measured the distribution of 2 In 1878 Clerk Maxwell repeated Cavendish's experiments with improved apparatus and the employment of a Kelvin quadrant electrometer as a means of detecting the absence of charge on the inner conductor after it had been connected to the outer case, and was thus able to show that if the law of electric attraction varies inversely as the nth power of the distance, then the exponent n must have a value of 2 E 1 o o. See Cavendish's Electrical Researches, P. 419. electricity on the surface of a cylinder, and its distribution between a sphere and cylinder of different lengths but of the same diameter. His experiments on the dissipation of electricity possess also a high value. He found that the momentary dissipation was proportional to the degree of electrification at the time, and that, when the charge was moderate, its dissipation was not altered in bodies of different kinds or shapes. The temperature and pressure of the atmosphere did not produce any sensible change; but he concluded that the dissipation was nearly proportional to the cube 'of the quantity of moisture in the air.' In examining the dissipation which takes place along imperfectly insulating substances, he found that a thread of gum-lac was the most perfect of all insulators; that it insulated ten times as well as a dry silk thread; and that a silk thread covered with fine sealing-wax insulated as powerfully as gum-lac when it had four times its length. He found also that the dissipation of electricity along insulators was chiefly owing to adhering moisture, but in some measure also to a slight conducting power. For his memoirs see Mem. de math. et phys. de l'acad. de sc., 1785, &c.
End of Article: FIRST PERIOD

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.