JEAN BAPTISTE JOSEPH FOURIER (17681830), French mathematician, was born at Auxerre on the 21st of March 1768. He was the son of a tailor, and was left an orphan in his eighth year; but, through the kindness of a friend, admission was gained for him into the military school of his native town, which was then under the direction of the Benedictines of SaintMaur. He soon distinguished himself as a student and made rapid progress, especially in mathematics. Debarred from entering the army on account of his lowness of birth and poverty, he was appointed
' Several experiments were made to this end in the United States (see CoSIMUNISM) by American followers of Fourier, whose doctrines were introduced there by Albert Brisbane (18091890). Indeed, in the years between 184o and 185o, during which the movement waxed and waned, no fewer than fortyone phalanges were founded, of which some definite record can be found. The most interesting of all the experiments, not alone from its own history, but also from the fact that it attracted the support of many of the most intellectual and cultured Americans was that of Brook Farm (q.v.).
professor of mathematics in the school in which he had been a pupil. In 1787 he became a novice at the abbey of St BenoitsurLoire; but he left the abbey in 1789 and returned to his college, where, in addition to his mathematical duties, he was frequently called to lecture on other subjects,—rhetoric, philosophy and history. On the institution of the Ecole Normale at Paris in 1795 he was sent to teach in it, and was afterwards attached to the Ecole Polytechnique, where he occupied the chair of analysis. Fourier was one of the savants who accompanied Bonaparte to Egypt in 1798; and during this expedition he was called to discharge important political duties in addition to his scientific ones. He was for a time virtually governor of half Egypt, and for three years was secretary of the Institut du Caire; he also delivered the funeral orations for Kleber and Desaix. He returned to France in 18o1, and in the following year he was nominated prefect of Isere, and was created baron and chevalier of the Legion of Honour. He took an important part in the preparation of the famous Description de l'Egypte and wrote the historical introduction He held his prefecture for fourteen years; and it was during this period that he carried on his elaborate and fruitful investigations on the conduction of heat. On the return of Napoleon from Elba, in 1815, Fourier published a royalist proclamation, and left Grenoble as Napoleon entered it. He was then deprived of his prefecture, and, although immediately named prefect of the Rhone, was soon after again deprived. He now settled at Paris, was elected to the Academic des Sciences in 1816, but in consequence of the opposition of Louis XVIII. was not admitted till the following year, when he succeeded the Abbe Alexis de Rochon. In 1822 he was made perpetual secretary in conjunction with Cuvier, in succession to Delambre. In 1826 Fourier became a member of the French Academy, and in 1827 succeeded Laplace as president of the council of the Ecole Polytechnique. In 1828 he became a member of the government commission established for the encouragement of literature. He died at Paris on the 16th of May 1830.
As a politician Fourier achieved uncommon success, but his fame chiefly rests on his strikingly original contributions to science and mathematics. The theory of heat engaged his attention quite early, and in 1812 he obtained a prize offered by the Academie des Sciences with a memoir in two parts, Theorie des mouvements de la chaleur clans les corps solides. The first part was republished in 1822 as La Theorie analytique de la chaleur, which by its new methods and great results made an epoch in the history of mathematical and physical science (see below: FOURIER'S SERIES). An English translation has been published by A. Freeman (Cambridge, 1872), and a German by Weinstein (Berlin, 1884). His mathematical researches were also concerned with the theory of equations, but the question as to his priority on several points has been keenly discussed. After his death Navier completed and published Fourier's unfinished work, Analyse des equations indeterminees (1831), which contains much original matter. In addition to the works above mentioned, Fourier wrote many memoirs on scientific subjects, and 'loges of distinguished men of science. His works have been collected and edited by Gaston Darboux with the title Euvres de Fourier (Paris, 1889189o).
For a list of Fourier's publications see the Catalogue of Scientific Papers of the Royal Society of London. Reference may also be made to Arago, " Joseph Fourier," in the Smithsonian Report (1871).
FOURIER'S SERIES, in mathematics, those series which proceed according to sines and cosines of multiples of a variable, the various multiples being in the ratio of the natural numbers; they are used for the representation of a function of the variable for values of the variable which lie between prescribed finite limits. Although the importance of such series, especially in the theory of vibrations, had been recognized by D. Bernoulli, Lagrange and other mathematicians, and had led to some discussion of their properties, J. B. J. Fourier (see above) was the first clearly to recognize the arbitrary character of the functions which the series can represent, and to make any serious attempt to prove the validity of such representation; the series areconsequently usually associated with the name of Fourier. More general cases of trigonometrical series, in which the multiples are given as the roots of certain transcendental equations, were also considered by Fourier.
Before proceeding to the consideration of the special class of series to be discussed, it is necessary to define with some precision what is to be understood by the representation of an arbitrary function by an infinite series. Suppose a function of a variable x to be arbitrarily given for values of x between two fixed values a and h; this means that, corresponding to every value of x such that a~x —b, a definite arithmetical value of the function is assigned by means of some prescribed set of rules. A function so defined may be denoted by f(x); the rules by which the values of the function are determined may be embodied in a single explicit analytical formula, or in several such formulae applicable to different portions of the interval, but it would be an undue restriction of the nature of an arbitrarily given function to assume a priori that it is necessarily given in this manner, the possibility of the representation of such a function by means of a single analytical expression being the very point which we have to discuss. The variable x may be represented by a point at the extremity of an interval measured along a straight line from a fixed origin; thus we may speak of the point c as synonymous with the value x=c of the variable, and of f(c) as the value of the function assigned to the point c. For any number of points between a and b the function may he discontinuous, i.e. it may at such points undergo abrupt changes of value; it will here be assumed that the number of such points is finite. The only discontinuities here considered will be those known as ordinary discontinuities. Such a discontinuity exists at the point c if f(c+e), f(c—e) have distinct but definite limiting values as c is indefinitely diminished; these limiting values are known as the limits on the right and on the left respectively of the function at c, and may be denoted by f(c+o), f(c—o). The discontinuity consists therefore of a sudden change of value of the function from f(c—o) to f(c+o), as x increases through the value c. If there is such a discontinuity at the point x=o, we may denote the limits on the right and on the left respectively by f(+o), f(—o).
Suppose we have an infinite series a1 (x) +u2(x)+... +u,,,(x)+.. . in which each tennis a function of x, of known analytical form; let any value x = c(a =c = b) be substituted in the terms of the series, and suppose the sum of n terms of the arithmetical series so obtained approaches a definite limit as n is indefinitely increased; this limit is known as the sum of the series. If for every value of c such that a gc b the sum exists and agrees with the value of
f(c), the series '±'u„ (x) is said to represent the function(fx) between
the values a, b of the variable. If this is the case for all points within the given interval with the exception of a finite number, at any one of which either the series has no sum, or has a sum which does not agree with the value of the function, the series is said to represent " in general " the function for the given interval. If the sum of n terms of the series be denoted by Se(c), the condition that S,,(c) converges to the value f(c) is that, corresponding to any finite positive number 5 as small as we please, a value in of n can be found such that if n~nh f(c)—S, (c)I<5.
Functions have also been considered which for an infinite number of points within the given interval have no definite value, and series have also been discussed which at an infinite number of points in the interval cease either to have a sum, or to have one which agrees with the value of the function; the narrower conception above will however be retained in the treatment of the subject in this article, reference to the wider class of cases being made only in connexion with the history of the theory of Fourier's Series.
Uniform Convergence of Series.—If the series u1(x)+u2(x)+...+ u2(x)+...converge for every value of x in a given interval a to b, and its sum be denoted by S(x), then if, corresponding to a finite positive number 5, as small as we please, a finite number n, can be found such that the arithmetical value of S(x) —S,,(x), where n n1 is less than 5, for every value of x in the given interval, the series is said to converge uniformly in that interval. It may however happen that as x approaches a particular value the number of terms of the series which must be taken so that S(x) —Se(x) may be <5, increases indefinitely; the convergence of the series is then infinitely slow in the neighbourhood of such a point, and the series is not uniformly convergent throughout the given interval, although it converges at each point of the interval. If the number of such points in the neighbourhood of which the series ceases to converge uniformly be finite, they may be excluded by taking intervals of finite magnitude as small as we please containing such points, and considering the convergence of the series in the given interval with such subintervals excluded; the convergence of the series is now uniform throughout the remainder of the interval. The series is said to be in general uniformly convergent within the given interval a to b if it can be made uniformly convergent by the exclusion of a finite number of portions of the interval, each such portion being arbitrarily small. It is known that the sum of an infinite series of continuous terms can be discontinuous only at points in the neighbourhood of which the convergence of the series is not
uniform, but nonuniformity of convergence of the series does not necessarily imply discontinuity in the sum.
Form of Fourier's Series.—If it be assumed that a function f(x) arbitrarily given for values of x such that o x
End of Article: JEAN BAPTISTE JOSEPH FOURIER (17681830) 

[back] FRANCOIS CHARLES MARIE FOURIER (17721837) 
[next] FOURMIES 
There are no comments yet for this article.
Do not copy, download, transfer, or otherwise replicate the site content in whole or in part.
Links to articles and home page are encouraged.