Online Encyclopedia

GEOLOGY (from Gr. yp7, the earth, and...

Online Encyclopedia
Originally appearing in Volume V11, Page 639 of the 1911 Encyclopedia Britannica.
Spread the word: del.icio.us del.icio.us it!
GEOLOGY (from Gr. yp7, the earth, and Abyor, science), the science which investigates the physical history of the earth. Its object is to trace the structural progress of .our planet from the earliest beginnings of its separate existence, through its various stages of growth, down to the present condition of things. It seeks to determine the manner in which the evolution of the earth's great surface features has been effected. It unravels the complicated processes by which each continent has been built up. It follows, even into detail, the varied sculpture of mountain and valley, crag and ravine. Nor does it confine itself merely to changes in the inorganic world. Geology shows that the present races of plants and animals are the descendants of other and very different races which once peopled the earth. It teaches that there has been a progressive development. of the inhabitants, as well as one of the globe on which they have dwelt; that each successive period in the earth's history, since the introduction of living things, has been marked by characteristic types of the animal and vegetable kingdoms; and that, however imperfectly the remains of these organisms have been preserved or may be deciphered, materials exist for a history of life upon the planet. The geographical distribution of existing faunas and floras is often made clear and intelligible by geological evidence; and in the same way light is thrown upon some of the remoter phases in the history of man himself. A subject so comprehensive as this must require a wide and varied basis of evidence. It is one of the characteristics of geology to gather evidence from sources which at first sight seem far removed from its scope, and to seek aid from almost every other leading branch of science. Thus, in dealing with the earliest conditions of the planet, the geologist must fully avail himself of the labours of the astronomer. Whatever is ascertainable by telescope, spectroscope or chemical analysis, regarding the constitution of other heavenly bodies, has a geological bearing. The experiments of the physicist, undertaken to determine conditions of matter and of energy, may sometimes be taken as the starting-points of geological investigation. The work of the chemical laboratory forms the foundation of a vast and increasing mass of geological inquiry. To the botanist, the zoologist, even to the unscientific, if observant, traveller by land or sea, the geologist turns for information and assistance. But while thus culling freely from the dominions of other sciences, geology claims as its peculiar territory the rocky framework of the globe. In the materials composing that framework, their composition and arrangement, the processes of their formation, the changes which they have undergone, and the terrestrial revolutions to which they bear witness, lie the main data of geological history. It is the task of the geologist to group these elements in such a way that they may be made to yield up their evidence as to the march of events in the evolution of the planet. He finds that they have in large measure arranged themselves in chronological sequence,—theoldest lying at the bottom and the newest at the top. Relics of an ancient sea-floor are overlain by traces of a vanished land-surface; these are in turn covered by the deposits ., of a former lake, above which once more appear proofs of the return of the sea. Among these rocky records lie the lavas and ashes of long-extinct volcanoes. The ripple left upon the shore, the cracks formed by the sun's heat upon the muddy bottom of a dried-up pool, the very imprint of the drops of a passing rain-shower, have all been accurately preserved, and yield their evidence as to geographical conditions often widely different from those which exist where such markings are now found. But it is mainly by the remains of plants and animals imbedded in the rocks that the geologist is guided in unravelling; the chronological succession of geological changes. He has found that a certain order of appearance characterizes these organic remains, that each great group of rocks is marked by its own special types of life, and that these types can he recognized, and the rocks in which they occur can be correlated even in distant countries, and where no other means of comparison would be possible. At one moment he has to deal with the bones of some large mammal scattered through a deposit of superficial gravel,at another time with the minute foraminifers and ostra'cdds of an upraised sea-bottom. Corals and crinoids crowded and crushed into a massive limestone where they lived and died, ferns and terrestrial plants matted together into a bed of coal where they originally grew, the scattered shells of a submarine sand-bank, the snails and lizards which lived and died within a hollow-tree, the insects which have been imprisoned within the exuding resin of old forests, the footprints of birds and quadrupeds, the trails of. worms left upon former shores—these, and innumerable other pieces of evidence, enable the geologist to realize in some measure what the faunas and floras of successive periods have been, and what geographical changes the site of every land has undergone. It is evident that to deal successfully with these varied materials, a considerable acquaintance with different branches of science is needful. Especially necessary is a tolerably wide knowledge of the processes now at work in changing the surface of the earth, and of at least those forms of plant and animal life whose remains are apt to be preserved in geological deposits, or which in their structure and habitat enable us to realize 'what their forerunners were. It has often been, insisted that the present is the key to the past; and in a wide sense this assertion is eminently true. Only in proportion as we understand the present, where everything is open on all sides to the fullest investigation, can we expect to decipher the past, where so much is obscure, imperfectly preserved or not preserved at all. A study of the existing economy of nature ought thus to be the foundation of the geologist's training. While, however, the present condition of things is thus employed, we must obviously be on our guard against the danger of unconsciously assuming that the phase of nature's operations which we now witness has been the same in all past time, that geological changes have always or generally taken place in former ages in the manner and on the scale which we behold to-day, and that at the present time all the great geological processes, which have produced changes in the past eras of the earth's history, are still existent and active. As a working hypothesis we may suppose that the nature of geological processes has remained constant from the beginning; but we cannot postulate that the action of these processes has never varied in energy. The few centuries wherein man has been observing nature obviously form much too brief an interval by which to measure the intensity of geological action in all past time.', ' For 'aught we can tell the present is an era of quietude and slow change, compared with some of the eras which have preceded it. Nor perhaps can we be quite sure that, when we have explored every geological process now in progress, we have exhausted all the causes of change which, even in comparatively recent times, have been at work. In dealing with the geological record, as the accessible solid part of the globe is called, we cannot-too vividly realize that at
End of Article: GEOLOGY (from Gr. yp7, the earth, and Abyor, science)
[back]
GEOLOGICAL
[next]
GEOMETRICAL CONTINUITY

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.