Online Encyclopedia

HISTORY OF GEOGRAPHICAL

Online Encyclopedia
Originally appearing in Volume V11, Page 623 of the 1911 Encyclopedia Britannica.
Spread the word: del.icio.us del.icio.us it!
HISTORY OF GEOGRAPHICAL THEORY The earliest conceptions of the earth, like those held by the primitive peoples of the present day, are difficult to discover and almost impossible fully to grasp. Early generalizations, as far as they were made from known facts, were usually expressed in symbolic language, and for our present purpose it is not profitable to speculate on the underlying truths which may sometimes be suspected in the old mythological cosmogonies. The first definite geographical theories to affect the western world were those evolved, or at least first expressed, by the Greeks.' Early The earliest theoretical problem of geography was the creek form of the earth. The natural supposition that the earth ideas. is a flat disk, circular or elliptical in outline, had in the time of Homer acquired a special definiteness by the introduction of the idea of the ocean river bounding the whole, an application of imperfectly understood observations. Thales of Fiat earth Miletus is claimed as the first exponent of the idea of a of Homer. spherical earth; but, although this does not appear to be warranted, his disciple Anaximander (c. 58o B.C.) put forward the theory that the earth had the figure of a solid body hanging freely in the centre of the hollow sphere of the starry heavens. The Pythagorean school of philosophers adopted the theory of a spherical earth, but from metaphysical rather than scientific reasons; their convincing argument was that a sphere being the most perfect solid figure was the only one worthy to circumscribe the dwelling-place of man. The division of the sphere into parallel zones and some of the consequences of this generalization seem to have presented themselves to Parmenides (c. 450 B.C.); but these ideas did not influence the Ionian school of philosophers, who in their treatment of geography preferred to deal with facts demonstrable by Hecataeas. travel rather than with speculations. Thus Hecataeus, claimed by H. F. Tozer 2 as the father of geography on account of his Periodos, or general treatise on the earth, did not advance beyond the primitive conception of a circular disk. He systematized the form of the land within the ring of ocean—the ok ou &i,j, or. habitable world—by recognizing two continents: Europe to the north, and Asia to the south of the midland sea. Herodotus. Herodotus, equally oblivious of the sphere, criticized and ridiculed the circular outline of the oekumene, which he knew to be longer from east to west than it was broad from north to south. He also pointed out reasons for accepting a division of the land into three continents—Europe, Asia and Africa. Beyond the limits of his personal travels Herodotus applied the characteristically Greek theory of symmetry to complete, in the unknown, outlines The idea cf lands and rivers analogous to those which had been ofsym- explored. Symmetry was in fact the first geographical metry. theory, and the effect of Herodotus's hypothesis that the Nile must flow from west to east before turning north in order to balance the Danube running from west to east before turning south lingered in the maps of Africa down to the time of Mungo Park.' To Aristotle (384–322 B.c.) must be given the distinction of founding scientific geography. He demonstrated the sphericity of the A concise sketch of the whole history of geographical method or theory as distinguished from the history of geographical discovery (see later section of this article) is only to be found in the introduction to H. Wagner's Lehrbuch der Geographic, vol. i. (Leipzig, 1900), which is in every way the most complete treatise on the principles of geography. 2 History of Ancient Geography (Cambridge, 1897), p. 70. 3 See J. L. Myres, " An Attempt to reconstruct the Maps used by Herodotus," Geographical Journal, viii. (1896), p. 605.earth by three arguments, two of which could be tested by observation. These were: (I) that the earth must be spherical, because of the tendency of matter to fall together towards a common centre; (2) that only a sphere could always throw a circular shadow on the moon during an eclipse; and (3) that the shifting of the horizon and the appearance of new constellations, or the disappearance of familiar stars, as one travelled from north to south, could only be explained on the hypo-thesis that the earth was a sphere. Aristotle, too, gave greater definiteness to the idea of zones conceived by Parmenides, who had pictured a torrid zone uninhabitable by reason of heat, two frigid zones uninhabitable by reason of cold, and two intermediate temper-ate zones fit for human occupation. Aristotle defined the temperate zone as extending from the tropic to the arctic circle, but there is some uncertainty as to the precise meaning he gave to the term " arctic circle." Soon after his time, however, this conception was clearly established, and with so large a generalization the mental horizon was widened to conceive of a geography which was a science. Aristotle had himself shown that in the southern temperate zone winds similar to those of the northern temperate zone should blow, but from the opposite direction. While the theory of the sphere was being elaborated the efforts of practical geographers were steadily directed towards ascertaining the outline and configuration of the oekumene, or habitable Fitting the world, the only portion of the terrestrial surface known oelmmene to the ancients and to the medieval peoples, and still to the retaining a shadow of its old monopoly of geographical sphere. attention in its modern name of the " Old World." The fitting of the oekumene to the sphere was the second theoretical problem. The circular outline had given way in geographical opinion to the elliptical with the long axis lying east and west, and Aristotle was inclined to view it as a very long and relatively narrow band almost encircling the globe in the temperate zone. His argument as to the narrowness of the sea between West Africa and East Asia, from the occurrence of elephants at both extremities, is difficult to understand, although it shows that he looked on the distribution of animals as a problem of geography. Pythagoras had speculated as to the existence of antipodes, but it was not until the first approximately accurate measurements of the globe and estimates of the length and breadth of the problem oekumene were made by Eratosthenes (c. 25o B.c.) that of the the fact that, as then known, it occupied less than a quarter Antipodes. of the surface of the sphere was clearly recognized. It was natural, if not strictly logical, that the ocean river should be extended from a narrow stream to a world-embracing sea, and here again Greek theory, or rather fancy, gave its modern name to the greatest feature of the globe. The old instinctive idea of symmetry must often have suggested other oekumene balancing the known world in the other quarters of the globe. The Stoic philosophers, especially Crates of Mallus, arguing from the love of nature for life, placed an oekumene in each quarter of the sphere, the three unknown world-islands being those of the Antoeci, Perioeci and Antipodes. This was a theory not only attractive to the philosophical mind, but eminently adapted to promote exploration. It had its opponents, however, for Herodotus showed that sea-basins existed cut off from the ocean, and it is still a matter of controversy how far the pre-Ptolemaic geographers believed in a water-connexion between the Atlantic and Indian oceans. It is quite clear that Pomponius Mela (c. A.D. 40), following Strabo, held that the southern temperate zone contained a habitable land, which he designated by the name Antichthones. Aristotle left no work on geography, so that it is impossible to know what facts he associated with the science of the earth's surface. The word geography did not appear before Aristotle, Aristotle's the first use of it being in the Ilept Koaµwe, which is one ro- of the writings doubtfully ascribed to him, and H. Berger graphkal considers that the expression was introduced by Eratos- views. thenes.4 Aristotle was certainly conversant with many facts, such as the formation of deltas, coast-erosion, and to a certain extent the dependence of plants and animals on their physical surroundings. He formed a comprehensive theory of the variations of climate with latitude and season, and was convinced of the necessity of a circulation of water between the sea and rivers, though, like Plato, he held that this took place by water rising from the sea through crevices in the rocks, losing its dissolved salts in the process. He speculated on the differences in the character of races of mankind living in different climates, and correlated the political forms of communities with their situation on a seashore, or in the neighbour-hood of natural strongholds. Strabo (c. 5o B.c.–A.D. 24) followed Eratosthenes rather than Aristotle, but with sympathies which went out more to the human interests than the mathematical basis of geography. He Strabo. compiled a very remarkable work dealing, in large measure from personal travel, with the countries surrounding the Mediterranean. He may be said to have set the pattern which was followed in succeeding ages by the compilers of " political geographies " * Geschichte der wissenschaftlichen Erdkunde der Griechen (Leipzig. 1891), Abt. 3, p. 6o. Aristotle and the sphere. dealing less with theories than with facts, and illustrating rather than formulating the principles of the science. Claudius Ptolemaeus (c. A.D. 150) concentrated in his writings the final outcome of all Greek geographical learning, and passed it across Ptolemy. the gulf of the middle ages by the hands of the Arabs, to form the starting-point of the science in modern times. His geography was based more immediately on the work of his predecessor, Marinus of Tyre, and on that of Hipparchus, the follower and critic of Eratosthenes. It was the ambition of Ptolemy to describe and represent accurately the surface of the oekumene, for which purpose he took immense trouble to collect all existing determinations of the latitude of places, all estimates of longitude, and to make every possible rectification in the estimates of distances by land or sea. His work was mainly cartographical in its aim, and theory was as far as possible excluded. The symmetrically placed hypothetical islands in the great continuousocean disappeared, and the oekumene acquired a new form by the representation of the Indian Ocean as a larger Mediterranean completely cut off by land from the Atlantic. The terra incognita uniting Africa and Farther Asia was an unfortunate hypothesis which helped to retard exploration. Ptolemy used the word geography to signify the description of the whole oekumene on mathematical principles, while chorography signified the fuller description of a particular region, and topography the very detailed description of a smaller locality. He introduced the simile that geography represented an artist's sketch of a whole portrait, while chorography corresponded to the careful and detailed drawing of an eye or an ear.' The Caliph al-Mamun (c. A.D. 815), the son and successor of Harun al-Rashid, caused an Arabic version of Ptolemy's great astronomical work (Avvratts Iceytovrt) to be made, which is known as the Almagest, the word being nothing more than the Gr. peylorrt with the Arabic article al prefixed. The geography of Ptolemy was also known and is constantly referred to by Arab writers. The Arab astronomers measured a degree on the plains of Mesopotamia, thereby deducing a fair approximation to the size of the earth. The caliph's librarian, Abu Jafar Muhammad Ben Musa, wrote a geographical work, now unfortunately lost, entitled Rasm el Arsi (" A Description of the World "), which is often referred to by subsequent writers as having been composed on the model of that of Ptolemy. The middle ages saw geographical knowledge die out in Christendom, although it retained, through the Arabic translations of Ptolemy, a certain vitality in Islam. The verbal inter-Oeography pretation of Scripture led Lactantius (c. A.D. 320) and In the other ecclesiastics to denounce the spherical theory of the middle earth as heretical. The wretched subterfuge of Cosmas ages- (c. A.D. 550) to explain the phenomena of the apparent movements of the sun by means of an earth modelled on the plan of the Jewish Tabernacle gave place ultimately to the wheel-maps —the T in an 0—which reverted to the primitive ignorance of the times of Homer and Hecataeus.2 The journey of Marco Polo, the increasing trade to the East and the voyages of the Arabs in the Indian Ocean prepared the way for the reacceptance of Ptolemy's ideas when the sealed books of the Greek original were translated into Latin by Angelus in 1410. The old arguments of Aristotle and the old measurements of Ptolemy were used by Toscanelli and Columbus in urging a westward voyage to India; and mainly on this account did the Revival of crossing of the Atlantic rank higher in the history of geography. scientific geography than the laborious feeling out of the coast-line of Africa. But not until the voyage of Magellan shook the scales from the eyes of Europe did modern geography begin to advance. Discovery had outrun theory; the rush of new facts made Ptolemy practically obsolete in a generation, after having been the fount and origin of all geography for a millennium. The earliest evidence of the reincarnation of a sound theoretical geography is to be found in the text-books by Peter Apian and Ap/anns. Sebastian Munster. Apian in his Cosmographicus liber, published in 1524, and subsequently edited and added to by Gemma Frisius under the title of Cosmographia, based the whole science on mathematics and measurement. He followed Ptolemy closely, enlarging on his distinction between geography and chorography, and expressing the artistic analogy in a rough diagram. T his slender distinction was made much of by most subsequent writers until Nathanael Carpenter in 1625 pointed out that the difference between geography and chorography was simply one of degree, not of kind. Sebastian Munster, on the other hand, in his Cosmographia universalis of 1544, paid no regard to the mathematical basis of M~7ns!er. geography, but, following the model of Strabo, described the world according to its different political divisions, and entered with great zest into the question of the productions ' Bunbury's History of Ancient Geography (2 vols., London, 1879), Miller's Geographi Graeci minores (2 vols., Paris, 1855, 1861) and Berger's Geschichte der wissenschaftlichen Erdkunde der Griechen (4 vols., Leipzig, 1887–1893) are standard authorities on the Greek geographers. 2 The period of the early middle ages is dealt with in Beazley's Dawn of Modern Geography (London ; part i., 1897; part ii., 1901; part iii., 1906); see also Winstedt, Cosmos Indicopleusles (1910).of countries, and into the manners and costumes of the various peoples. Thus early commenced the separation between what were Fong called mathematical and political geography, the one subject appealing mainly to mathematicians, the other to historians. Throughout the 16th and 17th centuries the rapidly accumulating store of facts as to the extent, outline and mountain and river systems of the lands of the earth were put in order by the generation of cartographers of which Mercator was the chief; but the writings of Apian and Munster held the field for a hundred years without a serious rival, unless the many annotated editions of Ptolemy might be so considered. Meanwhile the new facts were the subject of original study by philosophers and by practical men without reference to classical traditions. Bacon argued keenly on geographical matters and was a lover of maps, in which he observed and reasoned upon such resemblances as that between the outlines of South America and Africa. Philip Cluver's Introductio in geographiam universam tam veterem uam novam was published in 1624. Geography he defined as g the description of the whole earth, so far as it is known to us." It is distinguished from cosmography by dealing Cluverlus. with the earth alone, not with the universe, and from chorography and topography by dealing with the whole earth, not with a country or a place. The first book, of fourteen short chapters, is concerned with the general properties of the globe; the remaining six books treat in considerable detail of the countries of Europe and of the other continents. Each country is described with particular regard to its people as well as to its surface, and the prominence given to the human element is of special interest. A little-known book which appears to have escaped the attention of most writers on the history of modern geography was published at Oxford in 1625 by Nathanael Carpenter, fellow of Exeter College, with the title Geographie delineated forth Carpenter• in Two Bookes, containing the Sphericall and Topicall parts thereof. It is discursive in its style and verbose; but, considering the period at which it appeared, it is remarkable for the strong common sense displayed by the author, his comparative freedom from prejudice, and his firm application of the methods of scientific reasoning to the interpretation of phenomena. Basing his work on the principles of Ptolemy, he brings together illustrations from the most recent travellers, and does not hesitate to take as illustrative examples the familiar city of Oxford and his native county of Devon. He divides geography into The Spherical Part, or that for the study of which mathematics alone is required, and The Topical Part, or the description of the physical relations of parts of the earth's surface, preferring this division to that favoured by the ancient geographers —into general and special. It is distinguished from other English geographical books of the period by confining attention to the principles of geography, and not describing the countries of the world. A much more important work in the history of geographical method is the Geographia generalis of Bernhard Varenius, a German medical doctor of Leiden, who died at the age of twenty-eight in 1650, the year of the publication of his book. Varenlus. Although for a time it was lost sight of on the continent, Sir Isaac Newton thought so highly of this book that he prepared an annotated edition which was published in Cambridge in 1672, with the addition of the plates which had been planned by Varenius, but not produced by the original publishers. The reason why this great man took so much care in correcting and publishing our author was, because he thought him necessary to be read by his audience, the young gentlemen of Cambridge, while he was delivering lectures on the same subject from the Lucasian Chair." 3 The treatise of Varenius is a model of logical arrangement and terse expression; it is a work of science and of genius; one of the few of that age which can still be studied with profit. The English translation renders the definition thus: " Geography is that part of mixed mathematics which explains the state of the earth and of its parts, depending on quantity, viz. its figure, place, magnitude and motion, with the celestial appearances, &c. By some it is taken in too limited a sense, for a bare description of the several countries; and by others too extensively, who along with such a description would have their political constitution." Varenius was reluctant to include the human side of geography in his system, and only allowed it as a concession to custom, and in order to attract readers by imparting interest to the sterner details of the science. His division of geography was into two parts—(i.) General or universal, dealing with the earth in general, and explaining its properties without regard to particular countries; and (ii.) Special or particular, dealing with each country in turn from the chorographical or topographical point of view. General geography was divided into—(1) the Absolute part, dealing with the form, dimensions, position and substance of the earth, the distribution of land and water, mountains, woods and deserts, hydrography (including all the waters of the earth) and the atmosphere; (2) the Relative part, including the celestial properties, i.e. latitude, climate zones, longitude, &c.; and (3) the Comparative part, which " considers the 3 From translator's preface to the English version by Mr Dugdale (1733), entitled A Complete System of General Geography, revised by Dr Peter Shaw (London, 1956). particulars arising from comparing one part with another "; but under this head the questions discussed were longitude, the situation and distances of places, and navigation. Varenius does not treat of special geography, but gives a scheme for it under three heads—(1) Terrestrial, including position, outline, boundaries, mountains, mines, woods and deserts, waters, fertility and fruits, and living creatures; (2) Celestial, including appearance of the heavens and the climate; (3) Human, but this was added out of deference to popular usage. This system of geography founded a new epoch, and the book—translated into English, Dutch and French—was the unchallenged standard for more than a century. The framework was capable of accommodating itself to new facts, and was indeed far in advance of the knowledge of the period. The method included a recognition of the causes and effects of phenomena as well as the mere fact of their occurrence, and for the first time the importance of the vertical relief of the land was fairly recognized. The physical side of geography continued to be elaborated after Varenius's methods, while the historical side was developed separately. Both branches, although enriched by new facts, remained stationary so far as method is concerned until nearly the end of the 18th century. The compilation of " geography books " by uninstructed writers led to the pernicious habit, which is not yet wholly overcome, of reducing the general or " physical " part to a few pages of concentrated information, and expanding the particular or " political " part by including unrevised travellers' stories and uncritical descriptions of the various countries of the world. Such books were in fact not geography, but merely compressed travel. The next marked advance in the theory of geography may be taken as the nearly simultaneous studies of the physical earth Bergman. carried out by the Swedish chemist, Toi'bern Bergman, acting under the impulse of Linnaeus, and by the German philosopher, Immanuel Kant. Bergman's Physical Description of the Earth was published in Swedish in 1766, and translated into English in 1772 and into German in 1774. It is a plain, straight-forward description of the globe, and of the various phenomena of the surface, dealing only with definitely ascertained facts in the natural order of their relationships, but avoiding any systematic classification or even definitions of terms. The problems of geography had been lightened by the destructive criticism of the French cartographer D Anville (who had purged Kant. the map of the world of the last remnants of traditional fact unverified by modern observations) and rendered richer by the dawn of the new era of scientific travel, when Kant brought his logical powers to bear upon them. Kant's lectures on physical geography were delivered in the university of Konigsberg from 1765 onwards.' Geography appealed to him as a valuable educational discipline, the joint foundation with anthropology of that " knowledge of the world " which was the result of reason and experience. In this connexion he divided the communication of experience from one person to another into two categories—the narrative or historical and the descriptive or geographical; both history and geography being viewed as descriptions, the former a description in order of time, the latter a description in order of space. Physical geography he viewed as a summary of nature, the basis not only of history but also of " all the other possible geographies," of which he enumerates five, viz. (I) Mathematical geography, which deals with the form, size and movements of the earth and its place in the solar system; (2) Moral geography, or an account of the different customs and characters of mankind according to the region they inhabit; (3) Political geography, the divisions according to their organized governments; (4) Mercantile geography, dealing with the trade in the surplus products of countries; (5) Theological geography, or the distribution of religions. Here there is a clear and formal statement of the interaction and causal relation of all the phenomena of distribution on the earth's surface, including the influence of physical geography upon the various activities of mankind from the lowest to the highest. Notwithstanding the form of this classification, Kant himself treats mathematical geography as preliminary to, and therefore not dependent on, physical geography. Physical geography itself is divided into two parts: a general, which has to do with the earth and all that belongs to it—water, air and land; and a particular, which deals with special products of the earth—mankind, animals, plants and minerals. Particular importance is given to the vertical relief of the land, on which the various branches of human geography are shown to depend. Alexander von Humboldt (1769–1859) was the first modern geographer to become a great traveller, and thus to acquire an extensive Humboldt. stock of first-hand information on which an improved system of geography might be founded. The impulse given to the study of natural history by the example of Linnaeus; the results brought back by Sir Joseph Banks, Dr Solander and the two Forsters, who accompanied Cook in his voyages of discovery; the studies of De Saussure in the Alps, and the lists of desiderata in physical geography drawn up by that investigator, combined to ' Printed in Schriften zur physischen Geographie, vol. vi. of Schttbert's edition of the collected works of Kant (Leipzig, 1839). First published with notes by Rink in 1802.prepare the way for Humboldt. The theory of geography was advanced by Humboldt mainly by his insistence on the great principle of the unity of nature. He brought all the " observable things," which the eager collectors of the previous century had been heaping together regardless of order or system, into relation with the vertical relief and the horizontal forms of the earth's surface, Thus he demonstrated that the forms of the land exercise a directive and determining influence on climate, plant life, animal life and on man himself. This was no new idea; it had been familiar for centuries in a less definite form, deduced from a priori considerations, and so far as regards the influence of surrounding circumstances upon man, Kaat had already given it full expression. Humboldt's concrete illustrations and the remarkable power of his personality enabled him to enforce these principles in a way that produced an immediate and lasting effect. The treatises on physical geography by Mrs Mary Somerville and Sir John Herschel (the latter written for the eighth edition of the Encyclopaedia Britannica) showed the effect produced in Great Britain by the stimulus of Humboldt's work. Humboldt's contemporary, Carl Ritter (1779–1859), extended and disseminated the same views, and in his interpretation of " Comparative Geography " he laid stress on the importance of Ritter. forming conclusions, not from the study of one region by itself, but from the comparison of the phenomena of many places. Impressed by the influence of terrestrial relief and climate on human movements, Ritter was led deeper and deeper into the study of history and archaeology. His monumental Vergleichende Geographie, which was to have made the whole world its theme, died out in a wilderness of detail in twenty-one volumes before it had covered more of the earth's surface than Asia and a portion of Africa. Some of his followers showed a tendency to look on geography rather as an auxiliary to history than as a study of intrinsic worth. During the rapid development of physical geography many branches of -the study of nature, which had been included in the cosmography of the early writers, the physiography. of Geography Linnaeus and even the Erdkunde of Ritter, had been so much advanced by the labours of specialists that natural their connexion was apt to be forgotten. Thus geology, science. meteorology, oceanography and anthropology developed into distinct sciences. The absurd attempt was, and sometimes is still, made by geographers to include all natural science in geography; but it is more common for specialists in the various detailed sciences to think, and sometimes to assert, that the ground of physical geography is now fully occupied by these sciences. Political geography has been too often looked on from both sides as a mere summary of guide-book knowledge, useful in the schoolroom, a poor relation of physical geography that it was rarely necessary to recognize. The science of geography, passed on from antiquity by Ptolemy, re-established by Varenius and Newton, and systematized by Kant, included within itself definite aspects of all those terrestrial phenomena which are now treated exhaustively under the heads of geology, meteorology, oceanography and anthropology; and the inclusion of the requisite portions of the perfected results of these sciences in geography is simply the gathering in of fruit matured from the seed scattered by geography itself. The study of geography was advanced by improvements in cartography (see MAP), not only in the methods of survey and projection, but in the representation of the third dimension by means of contour lines introduced by Philippe Buache in 1737, and the more remarkable because less obvious invention of isotherms introduced by Humboldt in 1817. The " argument from design " had been a favourite form of reasoning amongst Christian theologians, and, as worked out by Paley in his Natural Theology, it served the useful purpose The teleo- of emphasizing the fitness which exists between all the togtee inhabitants of the earth and their physical environment. guinent in It was held that the earth had been created so as to fit geography. the wants of man in every particular. This argument was tacitly accepted or explicitly avowed by almost every writer on the theory of geography, and Cari Ritter distinctly recognized and adopted it as the unifying principle of his system. As a student of nature, however, he did not fail to see, and as professor of geography he always taught, that man was in very large measure conditioned by his physical environment. The apparent opposition of the observedfact to the assigned theory he overcame by looking upon the forms of the land and the arrangement of land and sea as instruments of Divine Providence for guiding the destiny as well as for supplying the requirements of man. This was the central theme of Ritter's philosophy; his religion and his geography were one, and the consequent fervour with which he pursued his mission goes far to account for the immense influence he acquired in Germany. The evolutionary theory, more than hinted at in Kant's " Physical Geography," has, since the writings of Charles Darwin, become the unifying principle in geography. The conception of the The theory development of the plan of the earth from the first ofevolu- cooling of the surface of the planet throughout the long tlon In geological periods, the guiding power of environment on geography. the circulation of water and of air, on the distribution of plants and animals, and finally on the movements of man, give to geography a philosophical dignity and a scientific completeness which it never previously possessed. The influence of environment on the organism may not be quite so potent as it was once believed to be, in the writings of Buckle, for instance,' and certainly man, the ultimate term in the series, reacts upon and greatly modifies his environment; yet the fact that environment does influence all distributions is established beyond the possibility of doubt. In this way also the position of geography, at the point where physical science meets and mingles with mental science, is explained and justified. The change which took place during the 19th century in the substance and style of geography may be well seen by comparing the eight volumes of Malte-Brun's Geographie universelle (Paris, 1812-1829) with the twenty-one volumes of Reclus's Geographie universelle (Paris, 1876-1895). In estimating the influence of recent writers on geography it is usual to assign to Oscar Peschel (1826-1875) the credit of having corrected the preponderance which Ritter gave to the historical element, and of restoring physical geography to its old pre-eminence.2 As a matter of fact, each of the leading modern exponents of theoretical geography—such as Ferdinand von Richthofen, Hermann Wagner, Friedrich Ratzel, William M. Davis, A. Penck, A. de Lapparent and Elisee Reclus—has his individual point of view, one devoting more attention to the results of geological processes, another to anthropological conditions, and the rest viewing the subject in various blendings of the extreme lights. The two conceptions which may now be said to animate the theory of geography are the genetic, which depends upon processes of origin, and the morphological, which depends on facts of form and distribution.
End of Article: HISTORY OF GEOGRAPHICAL
[back]
HISTORY OF FORENSIC
[next]
HISTORY OF MISSION

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.