Online Encyclopedia


Online Encyclopedia
Originally appearing in Volume V14, Page 29 of the 1911 Encyclopedia Britannica.
Spread the word: it!
HYBRIDISM. The Latin word hybrida, hibrida or ibrida has been assumed to be derived from the Greek u(3pis, an insult or outrage, and a hybrid or mongrel has been supposed to be an outrage on nature, an unnatural product. As a general rule animals and plants belonging to distinct species do not produce offspring when crossed with each other, and the term hybrid has been employed for the result of a fertile cross between individuals of different species, the word mongrel for the more common result of the crossing of distinct varieties. A closer scrutiny of the facts, however, makes the term hybridism less isolated and more vague. The words species and genus, and still more subspecies and variety, do not correspond with clearly marked and sharply defined zoological categories, and no exact line can be drawn between the various kinds of crossings from those between individuals apparently identical to those belonging to genera universally recognized as distinct. Hybridism therefore grades into mongrelism, mongrelism into cross-breeding, and cross-breeding into normal pairing, and we can say little more than that the success of the union is the more unlikely or more unnatural the further apart the parents are in natural affinity. The interest in hybridism was for a long time chiefly of a practical nature, and was due to the fact that hybrids are often found to present characters somewhat different from those of either parent. The leading facts have been known in the case of the horse and ass from time immemorial. The earliest recorded observation of a hybrid plant is by J. G. Gmelin towards the end of the 17th century; the next is that of Thomas Fairchild, who in the second decade of the 18th century, produced the cross which is still grown in gardens under the name of " Fairchild's Sweet William." Linnaeus made many experiments in the cross-fertilization of plants and produced several hybrids, but Joseph Gottlieb Kolreuter (1733–1806) laid the first real foundation of our scientific knowledge of the subject. Later on Thomas Andrew Knight, a celebrated English horticulturist, devoted much successful labour to the improvement of fruit trees and vegetables by crossing. In the second quarter of the IQth century C. F. Gartner made and published the results of a number of experiments that had not been equalled by any earlier worker. Next came Charles Darwin, who first in the Origin of Species, and later in Cross and Self-Fertilization of Plants, subjected the whole question to a critical examination, reviewed the known facts and added many to them. Darwin's conclusions were summed up by G. J. Romanes in the 9th edition of this Encyclopaedia as follows: 1. The laws governing the production of hybrids are identical, or nearly identical, in the animal and vegetable kingdoms. 2. The sterility which so generally attends the crossing of two specific forms is to be distinguished as of two kinds, which, although often confounded by naturalists, are in reality quite distinct. For the sterility may obtain between the two parent species when first crossed, or it may first assert itself in their hybrid progeny. In the latter case the hybrids, although possibly produced without any appearance of infertility on the part of their parent species, nevertheless prove more or less infertile among themselves, and also with members of either parent species. 3. The degree of both kinds of infertility varies in the case of different species, and in that of their hybrid progeny, from absolute sterility up to complete fertility. Thus, to take the case of plants, " when pollen from a plant of one family is placed on the stigma of a plant of a distinct family, it exerts no more influence than so much inorganic dust. From this absolute zero of fertility, the pollen of different species, applied to the stigma of some one species of the same genus, yields a perfect gradation in the number of seeds produced, up to nearly complete, or even quite complete, fertility; so, in hybrids themselves, there are some which never have produced, and probably never would produce, even with the pollen of the pure parents, a single fertile seed; but in some of these cases a first trace of fertility may be detected, by the pollen of one of the pure parent species causing the flower of the hybrid to wither earlier than it otherwise would have done; and the early withering of the flower is well known to be a sign of incipient fertilization. From this extreme degree of sterility we have self-fertilized hybrids producing a greater and greater number of seeds up to perfect fertility." 4. Although there is, as a rule, a certain parallelism, there is no fixed relation between the degree of sterility manifested by the parent species when crossed and that which is manifested by their hybrid progeny. There are many cases in which two pure species can be crossed with unusual facility, while the resulting hybrids are remarkably sterile; and, contrariwise, there are species which can only be crossed with extreme difficulty, though the hybrids, when produced, are very fertile. Even within the limits of the same genus, these two opposite cases may occur. 5. When two species are reciprocally crossed, i.e. male A with female B, and male B with female A, the degree of sterility often differs greatly in the two cases. The sterility of the resulting hybrids may differ likewise. 6. The degree of sterility of first crosses and of hybrids runs, to a certain extent, parallel with the systematic affinity of the forms which are united. " For species belonging to distinct genera can rarely, and those belonging to distinct families can never, be crossed. The parallelism, however, is far from complete; for a multitude of closely allied species will not unite, or unite with extreme difficulty, whilst other species, widely different from each other, can be crossed with perfect facility. Nor does the difficulty depend on ordinary constitutional differences; for annual and perennial plants, deciduous and evergreen trees, plants flowering at different seasons, inhabiting different stations, and naturally living under the most opposite climates, can often be crossed with ease. The difficulty or facility apparently depends exclusively on the sexual constitution of the species which are crossed, or on their sexual elective affinity." There are many new records as to the production of hybrids. Horticulturists have been extremely active and successful in their attempts to produce new flowers or new varieties of vegetables by seminal or graft-hybrids, and any florist's catalogue or the account of any special plant, such as is to be found in Foster-Melliar's Book of the Rose, is in great part a history of successful hybridization. Much special experimental work has been done by botanists, notably by de Vries, to the results of whose experiments we shall recur. Experiments show clearly that the obtaining of hybrids is in many cases merely a matter of taking sufficient trouble, and the successful crossing of genera is not infrequent. Focke, for instance, cites cases where hybrids were obtained between Brassica and Raphanus, Galium and Asperula, Campanula and Phyteuma, Verbascum and Celsia. Among animals, new records and new experiments are almost equally numerous. Boveri has crossed Echinus microtuberculatus with Sphaerechinus granularis. Thomas Hunt Morgan even obtained hybrids between Asterias, a starfish, and Arbacia, a sea-urchin, a cross as remote as would be that between a fish and a mammal. Vernon got many hybrids by fertilizing the eggs of Strongylocentrotus lividus with the sperm of Sphaerechinus granularis. Standfuss has carried on an enormous series of experiments with Lepidopterous insects, and has obtained a very large series of hybrids, of which he has kept careful record. Lepidopterists generally begin to suspect that many curious forms offered by dealers as new species are products got by crossing known species. Apello has succeeded with Teleostean fish; Gebhardt and others with Amphibia. Elliot and Suchetet have studied carefully the question of hybridization occurring normally among birds, and have got together a very large body of evidence. Among the cases cited by Elliot the most striking are that of the hybrid between Cola ptes cafer and C. auratus, which occurs over a very wide area of North America and is known as C. hybridus, and the hybrid between Euplocamus lineatus and E. horsfieldi, which appears to be common in Assam. St M. Podmore has produced successful crosses between the wood-pigeon (Columba palumbus) and a domesticated variety of the rock pigeon (C. livia). Among mammals noteworthy results have been obtained by Professor Cossar Ewart, who has bred nine zebra hybrids by crossing mares of various sizes with a zebra stallion, and who has studied in addition three hybrids out of zebra mares, one sired by a donkey, the others by ponies. Crosses have been made between the common rabbit (Lepus cuniculus) and the guinea-pig (Cavia cobaya), and examples of the results have been exhibited in the Zoological Gardens of Sydney, New South Wales. The Carnivora generally are very easy to hybridize, and many successful experiments have been made with animals in captivity. Karl Hagenbeck of Hamburg has produced crosses between the lion (Felis leo) and the tiger (F. tigris). What was probably a " tri-hybrid " in which lion, leopard and jaguar were mingled was exhibited by a London show-man in 1908. Crosses between various species of the smaller cats have been fertile on many occasions. The black bear (Ursus americanus) and the European brown bear (U. arctos) bred in the London Zoological Gardens in 1859, but the three cubs did not reach maturity. Hybrids between the brown bear and the grizzly-bear (U. horribilis) have been produced in Cologne, whilst at Halle since 1874 a series of successful matings of polar (U. maritimus) and brown bears have been made. Examples of these hybrid bears have been exhibited by the London Zoological Society. The London Zoological Society has also successfully mated several species of antelopes, for instance, the water-bucks Kobus ellipsiprymnus and K. unctuosus, and Selous's antelope Limnotragus selousi with L. gratus. The causes militating against the production of hybrids have also received considerable attention. Delage, discussing the question, states that there is a general proportion between sexual attraction and zoological affinity, and in many cases hybrids are not naturally produced simply from absence of the stimulus to sexual mating, or because of preferential mating within the species or variety. In addition to differences of habit, temperament, time of maturity, and so forth, gross structural differences may make mating impossible. Thus Escherick contends that among insects the peculiar structure of the genital appendages makes cross-impregnation impossible, and there is reason to believe that the specific peculiarities of the modified sexual palps in male spiders have a similar result. The difficulties, however, may not exist, or may be overcome by experiment, and frequently it is only careful management that is required to produce crossing. Thus it has been found that when the pollen of one species does not succeed in fertilizing the ovules of another species, yet the reciprocal cross may be successful; that is to say, the pollen of the second species may fertilize the ovules of the first. H. M. Vernon, working with sea-urchins, found that the obtaining of hybrids depended on the relative maturity of the sexual products. The difficulties in crossing apparently may ex-tend to the chemiotaxic processes of the actual sexual cells. Thus when the spermatozoa of an urchin were placed in a drop of sea-water containing ripe eggs of an urchin and of a starfish, the former eggs became surrounded by clusters of the male cells, while the latter appeared to exert little attraction for the alien germ-cells. Finally, when the actual impregnation of the egg is possible naturally, or has been secured by artificial means, the development of the hybrid may stop at an early stage. Thus hybrids between the urchin and the starfish, animals belonging to different classes, reached only the stage of the pluteus larva. A. D. Apello, experimenting with Teleostean fish, found that very often impregnation and segmentation occurred, but that the development broke down immediately afterwards. W. Gebhardt, crossing Rana esculenta with R. arvalis, found that the cleavage of the ovum was normal, but that abnormality began with the gastrula, and that development soon stopped. In a very general fashion there appears to be a parallel between the zoological affinity and the extent to which the incomplete development of the hybrid proceeds. As to the sterility of hybrids inter se, or with either of the parent forms, information is still wanted. Delage, summing up the evidence in a general way, states that mongrels are more fertile and stronger than their parents, while hybrids are at least equally hardy but less fertile. While many of the hybrid products of horticulturists are certainly infertile, others appear to be indefinitely fertile. Focke, it is true, states that the hybrids between Primula auricula and P. hirsuta are fertile for many generations, but not indefinitely so; but, while this may be true for the particular case, there seems no reason to doubt that many plant hybrids are quite fertile. In the case of animals the evidence is rather against fertility. Standfuss, who has made experiments lasting over many years, and who has dealt with many genera of Lepidoptera, obtained no fertile hybrid females, although he found that hybrid males paired readily and successfully with pure-bred females of the parent races. Elliot, dealing with birds, concluded that no hybrids were fertile with one another beyord the second generation, but thought that they were fertile with members of the parent races. Wallace, on the other hand, cites from Quatrefages tile case of hybrids between the moths Bombyx cynthia and B. arrindia, which were stated to be fertile inter se for eight generations. He also states that hybrids between the sheep and goat have a limited fertility inter se. Charles Darwin, however, had evidence that some hybrid pheasants were completely fertile, and he himself interbred the progeny of crosses between the common and Chinese geese, whilst there appears to be no doubt as to the complete fertility of the crosses between many species of ducks, J. L. Bonhote having interbred in various crosses for several generations the mallard (Anas boschas), the Indian spot-bill duck (A. poecilorhyncha), the New Zealand grey duck (A. superciliosa) and the pin-tail (Dafila acuta). Podmore's pigeon hybrids were fertile inter se, a specimen having been exhibited at the London Zoological Gardens. The hybrids between the brown and polar bears bred at Halle proved to be fertile, both with one of the parent species and with one another. Cornevin and Lesbre state that in 1873 an Arab mule was fertilized in Africa by a stallion, and gave birth to female offspring which she suckled. All three were brought to the Jardin d'Acclimatation in Paris, and there the mule had a second female colt to the same father, and subsequently two male colts in succession to an ass and to a stallion. The female progeny were fertilized, but their offspring were feeble and died at birth. Cossar Ewart gives an account of a recent Indian case in which a female mule gave birth to a male colt. He points out, however, that many mistakes have been made about the breeding of hybrids, and is not altogether inclined to accept this supposed case. Very little has been published with regard to the most important question, as to the actual condition of the sexual organs and cells in hybrids. There does not appear to be gross anatomical defect to account for the infertility of hybrids, but microscopical examination in a large number of cases is wanted. Cossar Ewart, to whom indeed much of the most interesting recent work on hybrids is due, states that in male zebra-hybrids the sexual cells were immature, the tails of the spermatozoa being much shorter than those of the similar cells in stallions and zebras. He adds, however, that the male hybrids he examined were young, and might not have been sexually mature. He examined microscopically the ovary of a female zebra-hybrid and found one large and several small Graafian follicles, in all respects similar to those in a normal mare or female zebra. A careful study of the sexual organs in animal and plant hybrids is very much to be desired, but it may be said that so far as our present knowledge goes there is not to be expected any obvious microscopical cause of the relative infertility of hybrids. The relative variability of hybrids has received considerable attention from many writers. Horticulturists, as Bateson has written, are " aware of the great and striking variations which occur in so many orders of plants when hybridization is effected." The phrase has been used " breaking the constitution of a plant " to indicate the effect produced in the offspring of a hybrid union, and the device is frequently used by those who are seeking for novelties to introduce on the market. It may be said generally that hybrids are variable, and that the products of hybrids are still more variable. J. L. Bonhote found extreme variations amongst his hybrid ducks. Y. Delage states that in reciprocal crosses there is always a marked tendency for the offspring to resemble the male parents; he quotes from Huxley that the mule, whose male parent is an ass, is more like the ass, and that the hinny, whose male parent is a horse, is more like the horse. Standfuss found among Lepidoptera that males were produced much more often than females, and that these males paired readily. The freshly hatched larvae closely resembled the larvae of the female parent, but in the course of growth the resemblance to the male increased, the extent of the final approximation to the male depending on the relative phylogenetic age of the two parents, the parent of the older species being prepotent. In reciprocal pairing, he found that the male was able to transmit the characters of the parents in a higher degree. Cossar Ewart, in relation to zebra hybrids, has discussed the matter of resemblance to parents in very great detail, and fuller information must be sought in his writings. He shows that the wild parent is not necessarily prepotent, although many writers have urged that view. He described three hybrids bred out of a zebra mare by different horses, and found in all cases that the resemblance to- the male or horse parent was more profound. Similarly, zebra-donkey hybrids out of zebra mares bred in France and in Australia were in characters and disposition far more like the donkey parents. The results which he obtained in the hybrids which he bredfrom a zebra stallion and different mothers were more variable, but there was rather a balance in favour of zebra disposition and against zebra shape and marking. " Of the nine zebra-horse hybrids I have bred," he says, " only two in their make and disposition take decidedly after the wild parent. As explained fully below, all the hybrids differ profoundly in the plan of their markings from the zebra, while in their ground colour they take after their respective dams or the ancestors of their dams far more than after the zebra—the hybrid out of the yellow and white Iceland pony, e.g. instead of being light in colour, as I anticipated, is for the most part of a dark dun colour, with but indistinct stripes. The hoofs, mane and tail of the hybrids are at the most intermediate, but this is perhaps partly owing to reversion towards the ancestors of these respective dams. In their disposition and habits they all undoubtedly agree more with the wild sire." Ewart's experiments and his discussion of them also throw important light on the general relation of hybrids to their parents. He found that the coloration and pattern of his zebra hybrids resembled far more those of the Somali or Grevy's zebra than those of their sire—a Burchell's zebra. In a general discussion of the stripings of horses, asses and zebras, he came to the conclusion that the Somali zebra represented the older type, and that therefore his zebra hybrids furnished important evidence of the effect of crossing in producing reversion to ancestral type. The same subject has of course been discussed at length by Darwin, in relation to the cross-breeding of varieties of pigeons; but the modern experimentalists who are following the work of Mendel interpret reversion differently (see MENDELISM). Graft-Hybridism.—It is well known that, when two varieties or allied species are grafted together, each retains its distinctive characters. But to this general, if not universal, rule there are on record several alleged exceptions, in which either the scion is said to have partaken of the qualities of the stock, the stock of the scion, or each to have affected the other. Supposing any of these influences to have been exerted, the resulting product would deserve to be called a graft-hybrid. It is clearly a matter of great interest to ascertain whether such formation of hybrids by grafting is really possible; for, if even one instance of such formation could be unequivocally proved, it would show that sexual and asexual reproduction are essentially identical. The cases of alleged graft-hybridism are exceedingly few, considering the enormous number of grafts that are made every year by horticulturists, and have been so made for centuries. Of these cases the most celebrated are those of Adam's laburnum (Cytisus Adami) and the bizzarria orange. Adam's laburnum is now flourishing in numerous places throughout Europe, all the trees having been raised as cuttings from the original graft, which was made by inserting a bud- of the purple laburnum into a stock of the yellow. M. Adam, who made the graft, has left on record that from it there sprang the existing hybrid. There can be no question as to the truly hybrid character of the latter—all the peculiarities of both parent species being often blended in the same raceme, flower or even petal; but until the experiment shall have been successfully repeated there must always remain a strong suspicion that, notwithstanding the assertion and doubt-less the belief of M. Adam, the hybrid arose as a cross in the ordinary way of seminal reproduction. Similarly, the bizzarria orange, which is unquestionably a hybrid between the bitter orange and the citron—since it presents the remarkable spectacle of these two different fruits blended into one—is stated by the gardener who first succeeded in producing it to have arisen as a graft-hybrid; but here again a similar doubt, similarly due to the need of corroboration, attaches to the statement. And the same remark applies to the still more wonderful case of the so-called trifacial orange, which blends three distinct kinds of fruit in one, and which is said to have been produced by artificially splitting and uniting the seeds taken from the three distinct species, the fruits of which now occur blended in the triple hybrid. The other instances of alleged graft-hybridism are too numerous to be here noticed in detail; they refer to jessamine, ash, hazel, vine, hyacinth, potato, beet and rose. Of these the cases of the vine, beet and rose are the strongest as evidence of graf t-hybridization, from the fact that some of them were produced as the result of careful experiments made by very competent a new species, so also a portion separated by infertility with the others would tend to form a new species. According to Romanes, therefore, mutual infertility was the starting-point, not the result, of specific modification. Romanes, however, did not associate his interesting theory with a sufficient number of facts, and it has left little mark on the history of the subject. A. R. Wallace, on the other hand, has argued that sterility between incipient species may have been increased by natural selection in the same fashion as other favourable variations are supposed to have been accumulated. He thought that " some slight degree of infertility was a not infrequent accompaniment of the external differences which always arise in ,a state of nature between varieties and incipient species." Weismann concluded, from an examination of a series of plant hybrids, that from the same cross hybrids of different character may be obtained, but that the characters are determined at the moment of fertilization; for he found that all the flowers on the same hybrid plant resembled one another in the minutest details of colour and pattern. Darwin already had pointed to the act of fertilization as the determining point, and it is in this direction that the theory of hybridism has made the greatest advance. The starting-point of the modern views comes from the experiments and conclusions on plant hybrids made by Gregor Mendel and published in 1865. It is uncertain if Darwin had paid attention to this work; Romanes, writing in the 9th edition of this Encyclopaedia, cited it without comment. First H. de Vries, then W. Bateson and a series of observers returned to the work of Mendel (see MENDELISa1), and made it the foundation of much experimental work and still more theory. It is still too soon to decide if the confident predictions of the Mendelians are justified, but it seems clear that a combination of Mendel's numerical results with Weismann's (see HEREDITY) conception of the particulate character of the germ-plasm, or hereditary material, is at the root of the phenomena of hybridism, and that Darwin was justified in supposing it to lie outside the sphere of natural selection and to be a fundamental fact of living matter. experimentalists. On the whole, the results of some of these experiments, although so few in number, must be regarded as making out a strong case in favour of the possibility of graft-hybridism. For it must always be remembered that, in experiments of this kind, negative evidence, however great in amount, may be logically dissipated by a single positive result. Theory of Hybridism.—Charles Darwin was interested in hybridism as an experimental side of biology, but still more from the bearing of the facts on the theory of the origin of species. It is obvious that although hybridism is occasionally possible as an exception to the general infertility of species inter se, the exception is still more minimized when it is re-membered that the hybrid progeny usually display some degree of sterility. The main facts of hybridism appear to lend support to the old doctrine that there are placed between all species the barriers of mutual sterility. The argument for the fixity of species appears still stronger when the general infertility of species crossing is contrasted with the general fertility of the crossing of natural and artificial varieties. Darwin himself, and afterwards G. J. Romanes, showed, however, that the theory of natural selection did not require the possibility of the commingling of specific types, and that there was no reason to suppose that the mutation of species should depend upon their mutual crossing. There existed more than enough evidence, and this has been added to since, to show that infertility with other species is no criterion of a species, and that there is no exact parallel between the degree of affinity between forms and their readiness to cross. The problem of hybridism is no more than the explanation of the generally reduced fertility of remoter crosses as compared with the generally increased fertility of crosses between organisms slightly different. Darwin considered and rejected the view that the inter-sterility of species could have been the result of natural selection. " At one time it appeared to me probable," he wrote (Origin of Species, 6th ed. p. 247), " as it has to others, that the sterility of first crosses and of hybrids might have been slowly acquired through the natural selection of slightly lessened degrees of fertility, which, like any other variation, spontaneously appeared in certain individuals of one variety when crossed with those of another variety. For it would clearly be advantageous to two varieties or incipient species if they could be kept from blending, on the same principle that, when man is selecting at the same time two varieties, it is necessary that he should keep them separate. In the first place, it may be remarked that species inhabiting distinct regions are often sterile when crossed; now it could clearly have been of no advantage to such separated species to have been rendered mutually sterile and, consequently, this could not have been effected through natural selection; but it may perhaps be argued that, if a species were rendered sterile with some one compatriot, sterility with other species would follow as a necessary contingency. In the second place, it is almost as much opposed to the theory of natural selection as to that of special creation, that in reciprocal crosses the male element of one form should have been rendered utterly impotent on a second form, whilst at the same time the male element of this second form is enabled freely to fertilize the first form; for this peculiar state of the reproductive system could hardly have been advantageous to either species." Darwin came to the conclusion that the sterility of crossed species must be due to some principle quite independent of natural selection. In his search for such a principle he brought together much evidence as to the instability of the reproductive system, pointing out in particular how frequently wild animals in captivity fail to breed, whereas some domesticated races have been so modified by confinement as to be fertile together although they are descended from species probably mutually infertile. He was disposed to regard the phenomena of differential sterility as, so to speak, by-products of the process of evolution. G. J. Romanes afterwards developed his theory of physiological selection, in which he supposed that the appearance of differential fertility within a species was the starting-point of new species; certain individuals by becoming fertile only inter se proceeded along lines of modification diverging from the lines followed by other members of the species. Physiological selection in fact would operate in the same fashion as geographical isolation; if a portion of a species separated on an island tends to become P
End of Article: HYBRIDISM
HYDANTOIN (glycolyl urea), C3H4N202

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.