Online Encyclopedia

GASPARD MONGE (1746-1818)

Online Encyclopedia
Originally appearing in Volume V18, Page 710 of the 1911 Encyclopedia Britannica.
Spread the word: del.icio.us del.icio.us it!
GASPARD MONGE (1746-1818), French mathematician, the inventor of descriptive geometry, was born at Beaune on the loth of May 1746. He was educated first at the college of the Oratorians at Beaune, and then in their college at Lyons—where, at sixteen, the year after he had been Iearning physics, he was made a teacher of it. Returning to Beaune for a vacation, he made, on a large scale, a plan of the town, inventing the methods of observation and constructing the necessary instruments; the plan was presented to the town, and preserved in their library. An officer of engineers seeing it wrote to recommend Monge to the commandant of the military school at Mezieres, and he was received as a draftsman and pupil in the practical school attached to that institution; the school itself was of too aristocratic a character to allow of his admission to it. His manual skill was duly appreciated: " I was a thousand times tempted," he said long afterwards, " to tear up my drawings in disgust at the esteem in which they were held, as if I had been good for nothing better." An opportunity, however, presented itself: being required to work out from data supplied to him the " defilement " of a proposed fortress (an operation then only performed by a long arithmetical process), Monge, substituting for this a geometrical method, obtained the result so quickly that the commandant at first refused to receive it—the time necessary for the work had not been taken; but upon examination the value of the discovery was recognized, and the method was adopted. And Monge, continuing his researches, arrived at that general method of the application of geometry to the arts of construction which is now called descriptive geometry (see GEOMETRY, DESCRIPTIVE). But such was the system in France before the Revolution that the officers instructed in the method were strictly forbidden to communicate it even to those engaged in other branches of the public service; and it was not until many years afterwards that an account of it was published. In 1768 Monge became professor of mathematics, and in 1771 professor of physics, at Mezieres; in 1778 he married Mme Horbon, a young widow whom he had previously defended in a very spirited manner from an unfounded charge; in 178o he was appointed to a chair of hydraulics at the Lyceum in Paris (held by him together with his appointments at Mezieres), and was received as a member of the Academic; his intimate friend-ship with C. L. Berthollet began at this time. In 1783, quitting Mezieres, he was, on the death of E. Bezout, appointed examiner of naval candidates. Although pressed by the minister to prepare for them a complete course of mathematics, he declined to do so, on the ground that it would deprive Mme Bezout of her only income, from the sale of the works of her late' husband; he wrote, however (1786), his Traits elementaire de la statique. Monge contributed (1770-1790) to the Memoirs of the Academy of Turin, the Memoires des savantes strangers of the Academy of Paris, the Memoires of the same Academy, and the Annales de chimie, various mathematical and physical papers. Among these may be noticed the memoir " Sur la theorie des deblais et des remblais " (Hem. de l'acad. de Paris, 1781), which, while giving a remarkably elegant investigation in regard to the problem of earth-work referred to in the title, establishes in connexion with it his capital discovery of the curves of curvature of a surface. Leonhard Euler, in his paper on curvature in the Berlin Memoirs for s76o, had considered, not the normals of the surface, but the normals of the plane sections through a particular normal, so that the question of the intersection of successive normals of the surface had never presented itself to him. Monge's memoir just referred to gives the ordinary differential equation of the curves of curvature, and establishes the general theory in a very satisfactory manner; but the application to the interesting particular case of the ellipsoid was first made by him in a later paper in 1795. A memoir in the volume for 1783 relates to the production of water by the combustion of hydrogen; but Monge's results had been anticipated by Henry Cavendish. In 1792, on the creation by the Legislative Assembly of an executive council, Monge accepted the office of minister of the marine, but retained it only until April 1793. When the Committee of Public Safety made an appeal to the savants to assist in producing the materiel required for the defence of the republic, he applied himself wholly to these operations, and distinguished himself by his indefatigable activity therein; he wrote at this time his Description de fart de fabriquer les canons, and his Avis aux ouvriers en fer sur la fabrication de l'acier. He took a very active part in the measures for the establishment of the normal school (which existed only during the first four months of the year 1795), and of the school for public works, afterwards the polytechnic school, and was at each of them professor for descriptive geometry; his methods in that science were first published in the form in which the shorthand writers took down his lessons given at the normal school in 1795, and again in 1798-1799. In 1796 Monge was sent into Italy with C. L. Berthollet and some artists to receive the pictures and statues levied from several Italian towns, and made there the acquaintance of General Bonaparte. Two years afterwards he was sent to Rome on a political mission, which terminated in the establishment, under A. Massena, of the short-lived Roman republic; and he thence joined the expedition to Egypt, taking part with his friend Berthollet as well in various operations of the war as in the scientific labours of the Egyptian Institute of Sciences and Arts; they accompanied Bonaparte to Syria, and returned with him in 1798 to France. Monge was appointed president of the Egyptian commission, and he resumed his connexion with the polytechnic school. His later mathematical papers are published (1794-x816) in the Journal and the Correspondance of the polytechnic school. On the formation of the Senate he was appointed a member of that body, with an ample provision and the title of count of Pelusium; but on the fall of Napoleon he was deprived of all his honours, and even excluded from the list of members of the reconstituted Institute. He died at Paris on the 28th of July 1818. For further information see B. Brisson, Notice historique sur Gaspard Monge; Dupin, Essai historique sur les services et les travaux scientifiques de Gaspard Monge (Paris, 1819), which contains (pp. 162—166) a list of Monge's memoirs and works; and the biography by F. Arago (euvres, t. 1854). Monge's various mathematical papers are to a considerable extent reproduced in the Application de l'anatyse a la geomeirie (4thed., last revised by the author, Paris, 1819) ; the pure text of this is reproduced in the 5th ed. (revue, corrigee et annotee par M. Liouville) (Paris, 1850), which contains also Gauss's Memoir, " Disquisitiones generales circa superficies curvas," and some valuable notes by the editor. The other principal separate works are Trailee elementaire de la statique, 8' edition, conformee a la precedente, par M. Hachette, et suivie dune note &'c., par M. Cauchy (Paris, 1846) ; and the Geometric descriptive (originating, as mentioned above, in the lessons given at the normal school). The 4th edition, published shortly after the author's death, seems to have been substantially the same as the 7th (Geometric descriptive par G. Monge, suivie d'une theorie des ombres et- de la perspective, extraite des apiers de l'auteur, par M. Brisson (Paris, 1847). (A. CA.)
End of Article: GASPARD MONGE (1746-1818)
[back]
MONG PAN (the Burmese Maingpan)
[next]
MONGHYR

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.