REFLECTION OF LIGHT. When a ray of light in a homogeneous medium fails upon the bounding surface of another medium, part of it is usually turned back or reflected and part is scattered, the remainder traversing or being absorbed by the second medium. The scattered rays (also termed the irregularly or diffusely reflected rays) play an important part in rendering objects visible—in fact, without diffuse reflection nonluminous objects would be invisible; they are occasioned by irregularities in the surface, but are governed by the same law as holds for regular reflection. This law is: the incident and reflected rays make equal angles with the normal to the reflecting surface at the point of incidence, and are coplanar with the normal. This is equivalent to saying that the path of the ray is a minimum.' In fig. i , MN represents the section of a plane mirror; OR is the incident ray, RP the reflected ray, and TR the normal at R. Then the law states that the angle of incidence ORT equals the angle of reflection PRT, and that M OR, RT and RP are in the same plane.
This natural law is capable of ready experimental proof (a simple one is to take the altitude of a
star with a meridian circle, its depression in a horizontal reflecting surface of mercury and the direction of the nadir), and the most delicate instruments have failed to detect any divergence from it. Its explanation by the Newtonian corpuscular theory is very simple, for we have only to assume that at the point of impact the perpendicular velocity of a corpuscle is reversed, whilst the horizontal velocity is unchanged (the mirror being assumed horizontal). The wavetheory explanation is more complicated, and in the simple form given by Huygens incomplete. The theory as developed by Fresnel shows that regular reflection is due to a small zone in the neighbourhood of the point R (above), there being destructive interference at all other points on the mirror; this theory also accounts for the polarization of the reflected light when incident at a certain angle (see POLARIZATION OF LIGHT). The smoothness or polish of the surface largely controls the reflecting power, for, obviously, crests and furrows, if of sufficient magnitude, disturb the phase relations. The permissible deviation from smoothness depends on the wavelength of the light employed: it appears that surfaces smooth to within 8th of a wavelength reflect regularly; hence long waves may be regularly reflected by a surface which diffuses short waves. Also the obliquity of the incidence would diminish the effect of any irregularities; this is experimentally confirmed by observing the images produced by matt surfaces or by smoked glass at grazing incidence.
We now give some elementary constructions of reflected rays, or, what comes to the same thing, of images formed by mirrors.
1. If 0 be a luminous point and OR a ray incident at R on the plane mirror MN (fig. I) to determine the reflected ray and the image of O. If RP be the reflected ray and RT perpendicular
' This principle of the minimum path, however, only holds for plane and convex surfaces; with concave surfaces it may be a maximum in certain cases.
to MN, then, by the law of reflection, angle ORT=TRP or ORM=PRN. Hence draw OQ perpendicular to MN, and produce it to S, making QS = OQ ; join SR and produce to P. It is easily seen that PR and OR are equally inclined to RT (or MN). A pointeye at P would see a point object 0 at S, i.e. at a distance below the mirror equal to its height above. If the object be a solid, then the images of its corners are formed by taking points at the same distances below as the corners are above the mirror, and joining these points. The eye, however, sees the image perverted, i.e., in the same relation as the
. 2. left hand to the
2. If A, B be two parallel plane mirrors and 0 a luminous point between them (fig. 3) to determine the images of 0 all the images must he on the line (produced) PQ passing through 0 and perpendicular to the mirrors. Let OP = p, OQ = q.
the image of 0
in A, 00'=2p; now 0' has an image 0" in B, such that 00"=OQ+QO"=q+q+2p=2p+2q; similarly 0" has an image O"' in A, such that 00"'=4p+2q. In the same way 0 forms an image 01 in B such that OOI =2q; OI has an image On in A, such that OOii=2p+2q; On has an image 0111 in B, such that OOiu=2p+4q, and so on. Hence there are an infinite number of images at definite distances from the mirrors. This explains the vistas as seen, for example, between two parallel mirrors at the ends of a room.
3. If A, B be two plane mirrors inclined at an angle 0, and intersecting at C, and 0 a luminous point between them, determine the position and number of images.
Call arc OA=a, OB=$. The image of 0 in A, i.e. a', is such that Oa' is perpendicular to CA, and Oa' =2a. Also Ca' = CO ; and it is easily seen that all the images lie on a circle of centre C and radius CO. The image a' forms an image a" in B such that Oa" =OB+Ba"=$+Ba'=p+OB+Oa'=210 +2a=20. Also a" forms an image a"' in A such that Oa' =OA+Aa'=2a+2B. And generally Oats=2ne, Oa2rt1=2n0+2a. In the same way it can be shown that the image first formed in B gives foci of the general distances: Ob2°=2110, Ob2s+'=2ne+2$. The number of images is limited, for when any one falls on the arc ab between the mirrors produced, it lies behind both mirrors, and hence no further image is possible. Suppose a=s be the first image to fall on this arc, then arc Oa2s> OBa, i.e. 2n9> 1r—a or 2n> (,ra)/0. Similarly if a2" 1 be the first to fall on ab, we obtain 2n+I> (r—a)/0. Hence in both cases the number of images is the integer next greater than (r—a)/0. In the same way it can be shown that the number of images of the b series is the integer next greater than (ir—$)/B. If 1r/8 be an integer, then the number of images of each series is ,r/B, for a/0 and $/0 are proper fractions. But an image of each series coincides; for if r/0=2n, we have 0a2n+0b2s=2ne+2ne=2,r i.e. a2n and b2s coincide; and if it/0=2n+I, we have Dais+'+ Obent14nb+2 (a+0) _ (4n+2) 0= 2r, i.e. a2n+' and ben+' coincide. Hence the number of images, including the luminous point, is 2er/0. This principle is utilized in the kaleidoscope (q.v.), which produces five images by meahs of its mirrors inclined at 6o° (fig. 4). Fig. 5 shows the seven images formed by mirrors inclined at 45°.
4. To determine the reflection at a spherical surface. Let APB (fig. 6) be a section of a concave spherical mirror through its centre 0 and luminous point U. If a ray, say UP, meet the surface, it will be reflected along PV, which is coplanar with UP and the normal PO at P, and makes the angle VPO = UPO. Hence VO/VP=OU/UP. This expression may be simplified if we assume P to be very close to A, i.e. that the ray UP is very slightly inclined to the axis. Writing A for P, we have VO/AV=OU/AU; and calling AU=u, AV=v and AO=r, this reduces to u'+v'=2r'.
This formula connects the distances of the object and image formed by a spherical concave mirror with the radius of the mirror. Points satisfying this relation are called " conjugate foci," for obviously they are reciprocal, i.e. u and v can be interchanged in the formula.
]~'IG. 4" FIG. S.
If u be infinite, as, for example, if the luminous source,be a star, then v' =2r', i.e. v = ir. This value is called the focal length of
the mirror, and the corresponding point, usually denoted by F, is called the " principal focus." This formula requires modification for a convex mirror. If u be always considered as positive (v may be either positive or negative), r must be regarded as positive with concave mirrors and negative with convex. Similarly the focal length, having the same sign as r, has different signs in the two cases.
In this formula all distances are measured from the mirror; but it is sometimes more convenient to measure from the principal focus. If the distances of the object and image from the principal focus be x and y, then u=x{f and v=y{f (remembering that f is positive for concave and negative for convex mirrors). Substituting these values in u'+ir'= f' and reducing we obtain xy =f2. Since f2 is always positive, x and y must have the same sign, i.e. the object and image must lie on the same side of the principal focus.
We now consider the production of the image of a small object placed symmetrically and perpendicular to the axis of a concave (fig. y) and a convex mirror (fig. 8). Let PQ be the object and A
A Qt"
the vertex of the mirror. ,Consider the point P. Now a ray through P and parallel to the axis after meeting the mirror at M is reflected through the focus F. The line MF must therefore contain the image of P. Also a ray through P and also through the centre of curvature C of the mirror is reflected along the same path ; this also contains the image of P. Hence the image is at P, the intersection of the lines MF and PC. Similarly the image of any other point can be found, and the final image deduced. We notice that in fig. 6 the image is inverted and real, and in fig. 7 erect and virtual. The " magnification " or ratio of the size of the image to the object can be deduced from the figures by elementary geometry; it equals the ratio of the distances of the image and object from the mirror or from the centre of curvature of the mirror.
The positions and characters of the images for objects at varying
O" O"
QI
q
?"
distances are shown in the table (F is the principal focus and C the centre of curvature of the mirror MA).
End of Article: REFLECTION OF LIGHT 

[back] REFERENDUM 
[next] REFORMATION 
There are no comments yet for this article.
Do not copy, download, transfer, or otherwise replicate the site content in whole or in part.
Links to articles and home page are encouraged.