Other Free Encyclopedias » Online Encyclopedia » Encyclopedia - Featured Articles » Contributed Topics from P-T

Technology - Raw Stock, Studio Machinery, The Laboratory, Film Exchanges, Theaters

camera picture motion negative

T he development of motion-picture technology during the silent-feature era was largely incremental. Increasing standardization and quality control brought filmmakers’ tools up to a professional level undreamed of in the short-film era. Yet this very standardization acted as a brake on the introduction of radical technical innovations. The intermittent surges of mechanical progress that mark the early cinema were hardly in evidence. The major exception to this trend, the development and introduction of the sound film, would eventually bring the silent cinema to an abrupt halt. But this work was carried on far from the silent stages and was of small consequence at the time to practitioners of silent filmmaking. Thus, in a 1926 paper for the American Academy of Political and Social Science, P. M. Abbott, vice-president of the Society of Motion Picture Engineers, divided motion-picture technology into five distinct process areas: manufacture of raw stock, studio machinery, laboratory equipment, material required for film exchange operations, and theater apparatus. Sound films had no place in his picture of cinema technology. 1

Raw Stock

In Abbott’s view, raw-film manufacture was a straightforward situation that could “be dismissed in one paragraph,” since it essentially duplicated the process involved for still photography. It is true that the manufacture of stock had long been standardized and that the Eastman Kodak Company had dominated the American market for years. But 1926 marked the climax of a revolution that Abbott allowed to pass unnoticed: the triumph of panchromatic negative stock in the Hollywood studios.

In 1915 Eastman Kodak offered only one negative stock and one positive release-print stock. This negative stock was an orthochromatic variety sensitive only to blue, violet, and ultraviolet light. It bore no name other than “motion-picture negative film,” but to differentiate it from stocks added later, it was eventually labeled Motion-Picture Negative Film Par Speed type 1201. Although it was not rated in terms of the current ASA scale, the speed of this film was approximately ASA 24 according to filmmaker and historian Kevin Brownlow. Super-speed negative film was introduced in August 1925, but this was also an orthochromatic stock. 2

The fact that orthochromatic negative stock was insensitive to the red end of the spectrum created many photographic problems. With red and yellow registering as black, and blue as white, relative color values could not be properly reproduced. Such a negative was unable to distinguish a white cloud in a blue sky and had a great deal of trouble with blue-eyed actors and actresses. The use of filters and various lighting tricks could mask some of these problems, but the results were never completely satisfactory. 3

Panchromatic stock, capable of reproducing proper tonal values across the entire visible spectrum, was first introduced for still photographic plates in 1906. That same year, George Albert Smith in England was able to sensitize motion-picture film to the red end of the spectrum for use in his Kinemacolor process, but his results were far from perfect. The Eastman Kodak Company introduced a panchromatic motion-picture stock in September 1913, also in connection with color work, but not until 1918 was this stock employed to solve the problems of monochrome photography. Sequences of Fox’s QUEEN OF THE SEA (1918) were photographed on panchromatic negative that year, but the stock still had a shelf life of only two months and needed to be specially ordered in batches of at least 8,000 feet. In fact, laboratories would resist the introduction of panchromatic negative for some time, because its sensitivity to red prevented them from using their traditional red-light illumination during development. 4

In 1922, Ned Van Buren successfully photographed THE HEADLESS HORSEMAN entirely on panchromatic stock, and the following year it became a regular Eastman product (later labeled type 1203). But laboratory resistance, lack of familiarity on the part of cinematographers, and an increased cost restricted its use to special occasions. For example, Robert Flaherty turned to panchromatic stock while filming M OANA in Samoa in 1923 only after rejecting the results obtained with orthochromatic. Despite the inherent processing difficulties, Flaherty was able to develop and print his footage deep inside a cave, using an underground spring as his water source. 5

Gradually the use of panchromatic negative began to increase, especially when much exotic location work was involved. Henry King filmed ROMOLA entirely on panchromatic stock in Italy in 1923–1924, claiming that it was faster than he had expected. This unforeseen benefit arose because panchromatic’s sensitivity to yellow and red permitted sufficient exposure under conditions unsuitable for par-speed film. 6

In 1924 panchromatic stock was still 1½¢ per foot more expensive than par-speed film, but prices were equalized in 1926, with a resulting shift to panchromatic. OLD IRONSIDES (1926) was the first Famous Players-Lasky feature shot entirely on panchromatic stock, and George Barnes used it to film THE WINNING OF BARHARA WORTH and THE SON OF THE SHEIK that same year. 7

For a time, as in A LOMA OF THE SOUTH SEAS and BEAU GESTE (both 1926), panchromatic location work was mixed with orthochromatic studio shots, but the results were unsatisfying. “After the visual grandeur of human faces in the desert,” wrote John Grierson of BEAU GESTE, “one returned to the simpering lollipop studio faces of the final garden scenes.” By the end of 1926, panchromatic negative was used more widely than par-speed film, a fact hailed by the SMPE as the year’s “most prominent progressive step in connection with film and emulsions.” 8

By contrast, there was relatively little change in the stock provided for release prints. Kodak manufactured Eastman Cine Positive Film type 1301 throughout this period. Dupont release-print stock was introduced in 1918. In 1920 Eastman and Gaevert were the only firms advertising release-print stock for sale in the pages of the Motion Picture News. By the end of the silent era, Carl Louis Gregory listed Eastman Kodak, Dupont-Pathé, Zeiss-Ikon, Agfa, and Gaevert as the leading manufacturers, but he gave no indication of the relative importance of these brands in the American market. 9

Eastman Duplicating Film, a low-contrast film with high resolving power, was in use by 1926 and was labeled type 1503. Prior to the introduction of this stock, any necessary duplicate negative was produced from an ordinary projection print through the use of par-speed negative, a process that resulted in significant graininess and noticeable halation surrounding dark objects in a light field (“Mackie line”). 10

Cellulose acetate film base (“safety stock”) was available throughout this period but was generally restricted to non-theatrical use, as in release prints provided for schools and hospitals or for home movies. Theatrical filmmakers continued to use the flammable cellulose nitrate stock until 1950 because, despite the attendant fire hazard, it was far less prone to shrinkage and curling, which were especially severe problems in this period. 11

Studio Machinery

Initially, motion-picture cameras were manufactured (or at least owned) by the producing companies. Biograph and Vitagraph, for example, had unique cameras dating from the industry’s earliest period, and the movements of these cameras were founded on various key patents held by the corporations. But as these firms grew more interested in defending their patents than improving their camera design, European models of French, German, and English manufacture came to dominate the market. These machines were sold outright to any available customer, a list that soon included members of the Motion Picture Patents Company, independent firms, and ambitious individual cameramen. Since the cinematographer was held directly responsible for the optical quality of the film, these men had an interest in maintaining their own equipment and avoiding the"junk boxes" supplied by the studio camera department. They soon found that a new generation of American camera manufacturers, notably the Bell & Howell Corporation and the Mitchell Camera Company, were quite responsive to their needs and suggestions, and links were forged directly between these manufacturers and various individual cinematographers, with the studios playing a much less prominent role. 12

Of course, the existence, side by side, of so many cameras of disparate manufacture led to significant standardization problems. Carl Louis Gregory wrote as late as 1917 that “no two cameras can be used in the same production at the present time without having the frame line adjusted to one another.” Because various cameras presented a different relation of frame line to perforations, a sequence that intercut footage taken by different cameras would appear to go “out of frame” at every cut. Some firms tried to standardize all the cameras under their control, but those cinematographers who were suspicious of studio camera departments insisted on using their own equipment. These departments had improved greatly by the end of the silent period, when they were capable of providing the finest equipment for their permanent staff. By 1927 only the top cameramen could afford the investment of over $10,000 required for some complete outfits, but many free-lancers did continue to earn a good living, especially if they owned some unusual piece of apparatus not in the typical studio collection. 13

In a 1915 ad in the Moving Picture World, the Motion Picture Apparatus Company of New York offered for sale “The Better Makes of Motion Picture Cameras,” namely the Pathé, Moy, Prestwich, and Prevost. The Pathé studio model had been hailed as “the most popular camera world-wide … until after the First World War.” A wooden camera encased in black leather, this rugged but inexpensive piece of equipment was noted for its curious, rear-positioned hand crank and external 400-foot film magazines. The film movement was the original Lumière harmonic cam, produced by Pathé under license after Lumière left the camera-manufacturing field. The camera came with a hooded Newtonian range finder and film footage counter. The Moy (or Moyer) was a British camera, whose film magazines were mounted internally, while the Prestwich was a very early British design capable of doubling as a printing machine. Designed specifically to circumvent American patents, the Prevost was assembled mainly from Pathé parts, but replaced the Pathé movement with a pearshaped cam lobe of its own. These were typical of the cameras that would have been available from a general dealer. 14

Not mentioned are two French cameras very commonly used at the Fort Lee studios, the Éclair and the Debrie, both of which had interior film magazines. The Éclair movement was similar to the Pathé, but the camera boasted a prismatic focusing unit, which eliminated the necessity for ground-glass focusing, common in most cameras of the day. The Debrie “Parvo” model had been introduced in 1908 and was highly regarded throughout the silent era for its precise workmanship and fine materials. Its unique reciprocating gear movement was highly accurate, and focusing was possible through a ruby window during cranking itself. Because it lacked a lens turret and a straight-line film feed, the Debrie never became a significant factor in the Hollywood studios but various models were favored by newsreel cameramen and European studio producers. 15

The first camera to offer real competition to the Pathé studio model was the Bell & Howell 2709, introduced in 1911–1912, but not widely used until 1915. Now considered “one of the most important pieces of cinemachinery ever designed,” this was the first high-precision, all-metal 35-mm motion-picture camera. The 2709 film movement had fixed non-moving registration pins and an intermittent motion mechanism so precise that many are still used for special-effects work today (the production Page 145  line ran until 1958). Its turret lens allowed “making close-up views without budging the camera from its position,” an interesting notion that prefigures one use for the modern zoom. Indeed, just about the only useful gadget missing from the 2709 was a cranking-speed indicator. The introduction of this camera changed cinematography from a tricky and inexact art to a science in which specific effects could be achieved with absolute predictability. 16

But improvements were still possible, and in 1920 Charles Rosher demonstrated on THE LOVE LIGHT the prototype of the Mitchell camera that would soon force the Bell & Howell from the studios. The key feature of this camera was its unique focusing device, a rackover system invented by John Leonard that allowed the cameraman to frame and compose directly through the lens without moving either lens or aperture. This rackover was accomplished by turning a handle that shifted the entire camera body to the right, placing the finder immediately behind the taking lens. A similar operation with the Bell & Howell not only was time-consuming but risked misaligning the taking lens in the process. 17

George Mitchell, who had acquired Leonard’s patent, devised a three-cam movement of great accuracy, one that would prove easier to silence than the Bell & Howell when talking pictures arrived. He also incorporated masks, irises, and mattes directly into the camera body, a substantial increase in convenience. These special qualities made the Mitchell’s dominance in the American studios inevitable, but the fact that its designer was a cameraman, and its factory was in Los Angeles, did not hurt matters. The gossip columns of the American Cinematographer often noted with pride that this or that cameraman had invested in a Mitchell: it was a local product that made good. Bell & Howell eventually introduced a less efficient “shiftover” of its own, but the general convenience of the Mitchell had already won the market 18 .

Various other cameras were used throughout this period for special applications. According to Carl Louis Gregory (1927), the Universal was “the first moderate priced camera to stand the test of time.” Solidly constructed of wood and metal, it was widely used by the government during the First World War and became a favorite of industrial filmmakers and explorers. Far superior was the Akeley, an all-metal camera designed by Carl Akeley of the American Museum of Natural History for use on his field expeditions. In order to better follow moving objects at a distance, Akeley replaced the usual pan and tilt cranks with a single handle. His viewfinder was paired with the taking lens and so mounted that it adjusted comfortably to the eye no matter how the camera was tilted. A focal-plane shutter maximized the light for exposure. Robert Flaherty used an Akeley on NANOOK OF THE NORTH, but “Akeley specialists” soon appeared in the studios as well, to film aerial dogfights and cowboy chases. These men were so specialized in the use of their equipment that they were listed separately on ASC rosters, like stills cameramen. 19

In 1925 Bell & Howell introduced the 35-mm Eyemo, a spring-wound, hand-held camera patterned after the 16-mm Filmo, which they had marketed since 1923. Initially presented only as a news camera, it was quickly taken up by cameramen like Dan Clark “to get to difficult places” on Tom Mix films. Soon Bell & Howell began promoting this use in Hollywood with advertisements like that in the January 1927 American Cinematographer, showing Cecil B. DeMille using an Eyemo during the filming of KING OF KINGS. 20

Experiments in the hand-held use of a motorized Debrie Parvo and a Moy Aerial Camera (which contained a gyroscopic stabilizer) were conducted at the Paramount Astoria studio in 1925–1926, but these systems were too clumsy for general use. The Debrie Sept and the Zeiss-Ikon Kinamo also failed to find a market in America, essentially because of their limited film capacity. The Devry, introduced in 1925, did find some acceptance among newsreel cameramen and wealthy amateurs, but the Eyemo remained the only practical hand-held professional motion-picture camera throughout the silent period and continued to be successfully marketed until 1970. 21

A major reason for the success of the Bell & Howell and Mitchell cameras was the superiority of their turreted lens system to the threaded lens mount of the Pathé or even the Debrie’s bayonet mount. Lenses were often marketed separately from camera bodies and by 1925 were commonly supplied at speeds of f/2.3, f/2.7, or f/3.5. Interior views of the Scopes trial were successfully filmed that year with an f/2.7 lens. By 1926, a lens of f/1.6 was considered “quite common” by the SMPE, and the following year an f/1.5 lens was claimed to be the fastest available. By the end of the silent period there was a great demand for fast lenses of f/1.5 to f/2.5, which allowed savings in lighting costs, better results in bad weather, and a greater range of artistic effects. Of the various specialty lenses, one of the most important was the Struss Pictorial Lens, originally developed by Karl Struss as a still-camera lens capable of producing a Photo Secessionist effect without the bother of negative manipulation.

John Leezer was the first to use it in motion-picture work, on THE MARRIAGE OF MOLLYO (1916). 22

By the late 1920s, cinematographers were quite fond of the “softly diffused pictures” they could obtain with the aid of the Struss Pictorial Lens and similar devices, but the rest of the industry did not share their feelings. When Joseph Dubray of the ASC praised such techniques before a Hollywood meeting of the Society of Motion Picture Engineers, he was attacked by various members who claimed that “fuzzy pictures are annoying to look at” and that “the ordinary man on the street wants his pictures clear.” Indeed, when the negative of STREET ANGEL was sent to the Fox lab in New York in 1928, it was originally returned as unprintable, although Hollywood cinematographers saw fit to honor Ernest Palmer’s heavy use of fog filters here with an Academy Award nomination. 23

The development of motion-picture camera lenses affected the work of the stills photographer as well. Despite the fact that these images have always been crucial in promoting current films or recalling past releases, little has been written about the significance of the motion-picture still. Stills were needed for advertising, marketing, production reference work, and trick photography. The first photographers employed to shoot scene stills posed the cast specially at the end of each action. Since this practice was costly in terms of time and money, photographers were told to shoot during action. But the eight-by-ten-view cameras then in use required a twenty-inch lens to duplicate the field of a 35-mm motion-picture camera with a two-inch lens. An f/6 lens of nineteen-inch focal length was the best available for still work, and by using fast film, a focal plane shutter, and exposures of one-fifth of a second, “fairly good results” could be obtained if the cinematographer was shooting around f/4.5. 24 But when motion-picture lenses began to increase in speed, the stills men could not keep up, and scene stills once again required posing. Glamour photography done in portrait studios for advertising and publicity purposes was modeled on the work of the most fashionable society photographers. After the war, it was not unusual to see Baron de Meyer, Arnold Genthe, or Edward Steichen handling a portrait sitting for a top star, and their style was carried on for many years by George Hurrell, Clarence Sinclair Bull, Ruth Harriet Louise, and many other Hollywood studio photographers.

Cinematographers generally calculated their exposures by eye, on the basis of their previous experience. A short strip of test film could immediately be developed   if necessary; a sign posted in the Universal camera department offered the sage advice, “If in doubt, shoot at 5.6.” It was a matter of professional pride to be able to produce a negative of uniform density entirely without recourse to meters, but several were available. The Harvey Calculator was little more than an exposure table operated like a slide rule. The Watkins Actinometer measured overall actinic power with the aid of a sensitive paper that darkened on exposure to light. Most satisfactory was the Cinophot, a visual extinction meter that measured reflected light. Unfortunately, reading an extinction meter is a largely subjective task, and various users could report different results. “Because of this, the old school photographers refer to exposure meters as ‘Guessometers,’” noted Carl Louis Gregory in 1927. 25

Three main varieties of artificial lighting were employed in the studios during this period: mercury vapor tubes, arc lamps, and incandescent units. A 1915 survey found that fifty American studios employed some form of artificial lighting, forty-three of them using mercury vapor tubes alone or in combination with other units. Known as

Cooper-Hewitts, the mercury tubes were introduced as early as 1905. Each assemblage contained a bank of eight tubes capable of throwing “a mass of light upon the scene similar to that from a fair size window or skylight.” Arranged in rows directly overhead, or angled slightly for front lighting, these units produced a flat, undifferentiated flow of light. Since the units were originally introduced to assist (and later supplant) sunlight diffused by muslin scrims, this was exactly what the filmmakers required. An added benefit was that the light given off by the Cooper-Hewitts was very rich at the blue and ultraviolet end of the spectrum, and almost absent at the red end. This dovetailed remarkably with the photosensitive properties of orthochromatic negative. “A scene which has been photographed with mercury vapor light invariably shows better modeling and tone relationships than subjects which have been made with other light sources,” reported the head of the Ansco Research Laboratories in 1922. 26

White-flame carbon arcs, adapted from theatrical lighting units and capable of concentrating a volume of light in a limited area, were introduced in 1912 and marketed widely by M. J. Wohl and Company and the Kliegl Brothers. Cecil B.

DeMille recalled borrowing such a lamp from a downtown Los Angeles theater to produce a dramatic effect in THE WARRENS OF VIRGINIA (1915), which was his eighth film but purportedly his first to use artificial light. By 1916–1917 Sun-Arcs (similar to naval searchlights) and twin-arc broadsides were being used to illuminate large sets and create more sculptural lighting effects. According to the New York Times, cameraman Harry Fischbeck developed “a new system of lighting, in which a preponderance of spotlights are used. He obtains his effects of highlights and shadows by employing spotlights as an artist uses a brush and colors on the canvas. The basic idea is to make each picture scene look like a painting, with the characters standing out in bold relief.” Fischbeck used this system quite conspicuously on MONSIEUR BEAUCAIRE (1924). 27

But compared to Cooper-Hewitts, arcs were dirty (hot ash floating through the air was a real problem), tremendously hot, and so labor-intensive that each unit required its own electrician. In addition, the problem of “Klieg eyes,” a painful redness and swelling that could incapacitate the performers, was eventually traced to the powerful ultraviolet rays given off by the arcs. The use of thirty-seven Sun-Arcs to light the cathedral set for THE HUNCHBACK OF NOTRE DAME (1923) may have been spectacular, but something else was required for more practical studio shooting. 28

By the late teens, incandescent tungsten lamps were being used for close-ups and other special purposes by Lee Garmes and a few others, but existing units were not available in suitably high wattages. Even worse, their actinic quality was so heavily weighted to the red end of the spectrum that they were relatively inefficient when used with orthochromatic negative. Serious development of incandescent lamps for motion-picture work did not begin until 1920, when the actress Maude Adams, who was promoting a color-film system, appealed to General Electric for a new type of lighting unit. This eventually resulted in the 10K and 30K tungsten Mazda lamps, later known more generically as “inkies.” As early as 1922, Victor Milner had hoped that incandescent lamps might soon replace arcs, which he found “glary,” but little real progress was made until 1927. 29

That year, a tremendous surge in the use of incandescent lamps was fueled by the dramatic rise in the use of panchromatic stock. This move knocked the Cooper-Hewitts out of the market and temporarily made arcs the dominant studio lighting units. But in addition to their previously mentioned problems, arcs were too directional and difficult to diffuse to be used as the sole unit in the cameraman’s lighting kit. They would also prove unsuitable for early talkies, since their operation produced a crackling on soundtracks that engineers had not yet learned to eliminate. In 1927 the Mole-Richardson Company was formed in Hollywood to market incandes-cent units with a wide range of motion-picture applications, and existing production conditions caused their sales to balloon immediately (see fig. 5.1). 30

Even without the sound-film problem that restricted the use of arcs, Mazda lamps dominated the last days of the silent picture, and films such as THE LITTLE SHEPHERD OF KINGDOM COME , TWO LOVERS , SHOW BOAT , SINS OF THE FATHERS, MASKS OF THE DEVIL (all 1928–1929), and the original silent version of HELL’S ANGELS were shot entirely or mainly with Mazda lights. Not only did the system have innate mechanical advantages, but operational costs were far lower. The number of men required to handle the lighting equipment on an average set dropped from twenty or thirty to as low as eight or twelve, while electric bills were reduced by one-third to one-half. 31

It should be remembered that the studio itself also functioned as a kind of lighting unit. Greenhouse construction was characteristic of the Fort Lee studios in the mid teens, with glass roof and walls maximizing the available New Jersey sunlight. Over-head scrims served to diffuse this light, and if it began to fail, Cooper-Hewitts could be called in as a supplement. Glass studios were less frequently seen in California, where better weather conditions allowed large open-air stages, such as the one at Universal City, to operate well into the teens. Enclosed studios entirely dependent on artificial lighting had been known in the East for many years, but with the introduction of Klieg and Wohl arcs, this curse suddenly became a blessing: cinematographers could ignore the vagaries of sunshine and could paint with their own light. By the late teens, many of the greenhouse studios were feverishly being painted over. 32

The proliferation of arc lighting in this period turned the average stage floor into a jungle of electric cables. Studio wiring followed the “wall pocket” system, with 100-amp pockets of two or three lines placed every twenty or thirty feet around the stage perimeter. Lighting for a stage would be centrally controlled from one master switchboard, no matter how many companies were working simultaneously. Each would have to shout or otherwise signal its orders to the main board. In 1920 remote-control systems were introduced in New York at Famous Players-Lasky’s Amsterdam Opera House and Hearst’s International studio. In this scheme the master switchboard was replaced by a conductor box capable of being operated remotely by each company. Power was carried overhead on runways, clearing the floors of cable. A small push-button unit controlling some six contactors was dropped from the runway near the director and cameraman, who could now act independently of the main board. Derivatives of this system soon appeared in the Famous Players-Lasky Astoria studio, the Fox New York studio, and the Metro Hollywood studio. 33

The editing process was the studio worker’s final contact with the film, although for most of the silent period little of the apparatus involved here was worthy of the name “technology.” A light table, a pair of rewinds, and a splicing block were all the specialized equipment needed to edit I NTOLERANCE or G REED. Off-the-shelf supplies included a pair of scissors to cut the film, a razor blade to scrape the emulsion, and a bottle of film cement. Miniaturized viewing machines to aid novices in admiring their work had been available for years, but professional pride kept most film cutters away from such devices. A good film editor could judge pacing and rhythm simply by pulling the film through his or her fingers, but the Moviola, a device that could achieve this effect far more accurately, began to force a change around 1924. This machine, developed by Ivan Serrurier, was essentially a motorized version of the earlier viewers, capable of running at variable speeds in either direction. It also had the benefit of proper illumination. Originally it was used only with open spools of film, but by 1928 the Model D, or “Director’s Model” Moviola, boasted 1,000 foot take-up and feed reels. Still resisted during the silent era by many traditional film editors, the Moviola would prove invaluable with the introduction of talking pictures. 34

The Laboratory

Laboratory handling of motion-picture negatives and positives underwent significant changes during this period, as procedures advanced from the nearly handcrafted methods of earlier days to the fully automated systems that would be required by talkies.

The rack-and-tank system dominated laboratory practice for many years. In the dark room, exposed negative would be wound in spiral fashion onto wooden frames or racks, emulsion side out, each rack being about 4½ feet square and capable of holding about 200 feet of film. A pair of racks would be dipped into a deep, narrow tank containing about 110 gallons of developing solution (generally Eastman 16, or some other member of the methol-hydroquinone group) until the handler judged it to have achieved the proper density. He would do this by periodically withdrawing the rack and examining the film against a ruby light. After a session in a washing tank, the rack of film was transferred to a fixing bath of sodium hyposulphite until all the active silver salts had dissolved out. Eight to twelve racks at a time were then placed in a very large washing bath, often located outdoors, and thoroughly rinsed with running water. Finally, each rack was attached to a wooden frame, or “horse,” and the film was unrolled onto huge revolving wooden drying drums (an intermediate step sometimes used in the early days added a glycerine bath before drying to guard against excessive moisture loss). 35

The potential for mechanical or chemical failure, or human error, was quite high. “It is,” wrote one lab man in 1923, “an impossibility to preserve an exceedingly careful attitude in a number of workmen who are by nature of their work wet and uncomfortable.” As the film became soaked in developer, it would expand, thus requiring the technicians to tighten thumb screws on the rack to keep it from slipping off. Conversely, as it dried, it began to shrink, and the screws all needed to be reset again. So much handling caused scratching and tearing problems. There were difficulties with non-uniformity of development, especially since the racks held such short lengths of film. Frequent exposure to air created dust problems and air-bell marks (spots caused by evaporating droplets of water that kept developer from the film). Rack marks—dark bands on the film where it had been wrapped over the top or bottom of a rack—caused rhythmic flashing onscreen. Laboratory specialists as late as 1925 felt that “much of the film shown in the present day theatre” suffered from such visible defects. 36

Kodak had installed Gaumont equipment for automatic processing of positive film as early as 1913, but not until 1920 did the Spoor-Thompson machine (which had the capacity to correct for shrinkage during processing) begin to make an impact on general laboratory practice. The Erbograph, in use soon after, was a horizontal-feed machine that could even perform messy tinting and toning operations. Its manpower savings were also considerable. Not until the end of the silent era, however, would filmmakers trust the development of motion-picture negatives to any automated system. Old-time laboratory men, who were leery of machines damaging irreplaceable camera negatives, also felt that “hand-developing” gave them an opportunity to correct exposure problems that might have occurred during photography. In 1925 Alfred B. Hitchens, technical director of the Duplex Motion Picture Laboratories, argued that it was the cinematographer’s responsibility to provide a properly exposed negative and that the greatest contribution a laboratory could make was to guarantee consistency of development. Criticized by those who felt that every negative needed uniform density throughout (so-called “one-light” negatives), he answered that negatives could be timed, with varying densities compensated for by automatic light changes during printing. Nevertheless, such a system was slow to catch on in Hollywood, where most negative was processed. Not until 1927 did Universal install an improved Spoor-Thompson machine for automatic negative developing. Capable of processing 4,000 feet of film per hour, it was first used on THE MAN WHO LAUGHS and resolved most of the problems associated with the rack-and-tank method. Negative timing, of course, continued to be done by eye. 37

Little change occurred during these years in the actual printing of release positives. The most commonly used machines were the Duplex, a step printer, and the Bell & Howell Model D, a continuous printer introduced as part of the Bell & Howell system in 1911. The Duplex featured a complicated intermittent movement in which each frame was stopped and printed individually. It was especially suited to an age when perforations and frame lines were not yet completely uniform. The Bell & Howell was a continuous-contact printer in which both positive and negative traveled in unison around a printing sprocket. Its speed of 60 feet per minute was triple that of most step printers. Still fairly labor-intensive, the machines were fed by women who worked all day in the weak glow of a ruby light. A range of printing densities could be selected and automatically programmed for each reel, with the changes triggered by notches cut in the side of the negative. The Duplex, for example, could provide a range of eighteen different densities and change these densities eighteen times per sitting. 38

Film Exchanges

P. M. Abbott, in his 1926 report to the Academy of Political and Social Science, stated that “relatively little equipment was used in film exchanges,” the business being for the most part devoted to distributing, inspecting, repairing, and storing circulating prints. Exchanges shared much of what apparatus they did use with laboratories and theaters, notably the rewinds used for inspecting the film and the reels it was wound onto. It was traditional, however, for exchanges to mount their films on the worst available reels. “I myself stood beside the manager of an exchange supplying dozens of theaters,” reported F. H. Richardson, “and we have both watched the winding of a new roll of film just received from the producer on a flimsy, rickety, bent up, decrepit reel, which in the process of a single winding of the film would cause more damage to the same than would cover the cost of a fairly good new reel.” Projectionists would remove the film from these “exchange reels” whenever possible, but the damage might well be done already, as Richardson suggests. 39

Most exchanges were equipped with the Bell & Howell Standard Film Splicing Machine soon after it was introduced in the mid 1920s, but their employees were often antagonistic to any such mechanical splicing device. The Vidaver Film Inspection Machine was available in 1924, but theaters seemed more interested in this first non-manual examining device than were the exchanges. Properly equipped or not, the performance of exchange workers seems to have left much to be desired. Richardson reports “reels loaded with film taken from the shipping case by exchange employees and literally thrown, or tossed, a distance of fully six feet to a board-top table.” Exchange workers may have had to deal with only a few kinds of technical apparatus, but the way they used, or abused, these items could easily result in the “tangled mass in the shipping case” that not infrequently arrived at local theaters. 40


Theater equipment included most of the same film-handling devices used by exchanges, namely splicers, rewinds, and various examining machines. Some projectionists would supply themselves with a foot-candle meter to measure screen-illumination intensity. All booths would have some form of magic lantern to project slides for various purposes, and atmospheric theaters would use the Brenograph, which could project everything from song slides to the Aurora Borealis. Ben Hall supplies the quintessential Brenograph tag line: “Please Do Not Turn On the Clouds Until the Show Starts. Be Sure the Stars Are Turned Off When Leaving.” 41

But, of course, projecting the film remained the theater’s most crucial mechanical task, the final technological link between filmmaker and audience. Because of a burst of new projector designs in the years just prior to 1915, only a few new machines were introduced into the American market during the period under discussion. While the Motiograph, Powers Cameragraph, and Simplex projectors dominated the field, it should be remembered that many theaters chose less elaborate machines, such as the American Standard or the Baird, or continued to make do with surviving models from the early days of cinema. David Hulfish’s Motion Picture Work, a 1913 manual that had wide circulation in the late teens, still contained detailed descriptions of such antique apparatus as the Selig Polyscope, Edengraph, and Lubin projectors. The same 1915 issue of the Moving Picture World that carried the camera ads referred to earlier included an announcement from the Amusement Supply Company, which identified the major brands of projectors as Powers, Motiograph, Simplex, and Edison. On another page, the same firm offered the following rebuilt machines for sale: a 1908 model Motiograph for $60, an Edison Exhibition model for $65, a Powers No. 5 for $75, a Powers No. 6 for $115, and a 1911 Motiograph for $125. A rival firm, the Stern Manufacturing Company, offered floor samples of the Simplex or Powers 6A for $185. The Powers was also available from them with motor drive at $230. 42

The Motiograph was introduced in 1908, a development of A. C. Roebuck’s Opti-graph, which had been one of the earliest American projectors to be widely distributed (via the Sears, Roebuck Company). The Motiograph No. 1 was the first projector having all gears enclosed, as well as the first in which the movement could be easily removed for cleaning or repairs. This Geneva-type movement operated an intermit-tent sprocket wheel known as the “star and cam,” and the entire movement assembly slid up and down for framing. While the earliest models seem unusually slight, the Motiograph was constantly under development throughout this period. The addition of cylindrical rear shutters in 1928 gave the Motiograph a decided advantage over its competition when sound-on-film arrived by increasing the amount of available light. Although Don Malkames could write in 1957 that the Motiograph “is still considered one of the finest projectors manufactured today,” it was relatively ignored during the 1920s. James Cameron neglects to mention the Motiograph in his encyclopedic Motion Picture Projection (perhaps because the manufacturer failed to buy a display ad in the book), but T. O’Connor Sloane leaves the machine out of his book as well. 43

The machines that do merit detailed description in such manuals are invariably the Simplex and the Powers Cameragraph. The most significant of the Cameragraphs in use during this period were No. 5 and No. 6, both on the market by 1909. The Powers Cameragraph No. 5 incorporated a traditional Geneva movement with a four-slot star and a one-pin cam, kept in balance by a heavy flywheel mounted directly on the drive shaft. It was available with two styles of safety shutter and boasted fireproof feed and takeup magazines. The No. 6 introduced a remarkable new movement called the “pin cross.” A four-armed cross mounted on the drive shaft carried four pins that engaged a revolving cam ring, thus effecting movement of the sprocket shaft. This system afforded a longer exposure without added strain on the mechanism. Before the Cameragraph No. 7 could be placed on the market, the Nicholas Power Company merged with the International Projector Company, and the trademark disappeared. Nonetheless, the Powers name was extremely respected throughout the silent period. The company constantly upgraded the basic equipment by offering devices such as the Nupower motor (a universal motor capable of running on either AC or DC), the Powers speed indicator, which gave projector speed in feet per minute and minutes per reel, a film-footage recorder, and a remote instrument panel that could provide readings on current and voltage regulation of the arc, as well as projector speed. When Grauman’s Chinese Theatre opened in 1927, there were three Powers Cameragraphs in the booth. 44

The Simplex projector was introduced by the Precision Machine Company in 1911 and eventually, with the demise of the Nicholas Power Company, came to dominate the market. “It was the first completely enclosed mechanism with center frame bearings. It had means for adjusting the revolving shutter during operation, a new style of sliding gate instead of the former hinged types, a new type of fire shutter and governor, and a precision-focusing and lens-mount attachment,” wrote Malkames. The Simplex Model S employed the standard arc lamp, while the Model  was adapted for Mazda projection. As with the Powers, a motorized variable-speed control was also available. The intermittent used was the traditional Geneva cross. By the end of the silent era, the Simplex was the projector of choice in theaters such as the Roxy. The introduction of the Simplex marked the arrival of the modern motion-picture projector, and although it reached the market several years before the period under discussion, no major improvements were seen in American projection design until the introduction of the rear shutter by Motiograph in 1928 (a feat matched by the Super Simplex of 1930). 45

Technology for E-Marketing - Background, Building a Theoretical Framework Using an Action Research Methodology, Input, Processes, Strategic Output [next] [back] Technological Change and Classical Film Style - A Specimen Scene, THE CHARGE OF THE LIGHT BRIGADE Scene 34, Sources of Innovation, Case Studies

User Comments

Your email address will be altered so spam harvesting bots can't read it easily.
Hide my email completely instead?

Cancel or