Other Free Encyclopedias » Online Encyclopedia » Encyclopedia - Featured Articles » Contributed Topics from F-J

Interactive Multimedia Technologies for Distance Education Systems - INTRODUCTION, BACKGROUND, MAIN FOCUS, FUTURE TRENDS, CONCLUSION

learning technology time information

Hakikur Rahman
SDNP, Bangladesh


Information is typically stored, manipulated, delivered and retrieved using a plethora of existing and emerging technologies. Businesses and organizations must adopt these emerging technologies to remain competitive. However, the evolution and progress of the technology (object orientation, high-speed networking, Internet, etc.) has been so rapid that organizations are constantly facing new challenges in end-user training programs. These new technologies are impacting the whole organization, creating a paradigm shift that in turn enables them to do business in ways never possible before (Chatterjee & Jin, 1997).

Information systems based on hypertext can be extended to include a wide range of data types, resulting in hypermedia, providing a new approach to information access with data storage devices such as magnetic media, video disk and compact disc (CD). Along with alphanumeric data, today’s computer systems can handle text, graphics and images, thus bringing audio and video into everyday use.

The Distance Education Task Force (DETF) Report (2000) refers that technology can be classified into non-interactive and time-delayed interactive systems, and interactive distance learning systems. Non-interactive and time-delayed interactive systems include printed materials, correspondence, one-way radio and television broadcasting. Different types of telecommunications technology are available for the delivery of educational programs to single and multiple sites throughout disunited areas and locations.

However, delivering content via the World Wide Web (WWW) has been tormented by unreliability and inconsistency of information transfer, resulting in unacceptable delays and the inability to effectively deliver complex multimedia elements including audio, video and graphics. A CD/Web hybrid, a Web site on a CD, combining the strengths of the CD-ROM and the WWW, can facilitate the delivery of multimedia elements by preserving connectivity, even at constricted bandwidth. Compressing a Web site onto a CD-ROM can reduce the amount of time that students spend interacting with a given technology, and can increase the amount of time they spend learning.

University teaching and learning experiences are being replicated independently of time and place via appropriate technology-mediated learning processes, like the Internet, the Web, CD-ROM and so forth, to increase the educational gains possible by using the Internet while continuing to optimize the integration of other learning media and resources through interactive multimedia communications. Among other conventional interactive teaching methods, Interactive Multimedia Methods (IMMs) seem to be adopted as another mainstream in the path of the distance learning system.


F. Hofstetter in his book ( Multimedia Instruction Literacy ) defined “Multimedia Instruction” as “the use of a computer to present and combine text, graphics, audio and video, with links and tools that let the user navigate, interact, create and communicate.”

Interactive Multimedia enables the exchange of ideas and thoughts via most appropriate presentation and transmission media. The goal is to provide an empowering environment where multimedia may be used anytime, anywhere, at moderate cost and in a user-friendly manner. Yet the technologies employed must remain apparently transparent to the end user. Interactive distance learning systems can be termed as “live interactive” or “stored interactive,” and range from satellite and compressed videoconferencing to stand-alone computer-assisted instruction with two or more participants linked together, but situated in locations that are separated by time and/or place.

Interactive multimedia provides a unique avenue for the communication of engineering concepts. Although most engineering materials today are paper based, more and more educators are examining ways to implement publisher-generated materials or custom, self-developed digital utilities into their curricula (Mohler, 2001). Mohler (2001) also referred that it is vital for engineering educators to continue integrating digital tools into their classrooms, because they provide unique avenues for activating students in learning opportunities and describe engineering content in such a way that is not possible with traditional methods.

The recent media of learning constitutes a new form of virtual learning-communication. It very probably demands an interacting subject that is changed in its self-image. The problem of translation causes a shift of meaning for the contents of knowledge. Questions must be asked: Who and what is communicating there? In which way? And about which specific contents of knowledge? The connection between communication and interaction finally raises the philosophical question of the nature of social relationships of Internet communities, especially with reference to user groups of learning technologies in distance education, generally to the medium in its whole range (Cornet, 2001).

Many people, including educators and learners, enquire among themselves whether distant learners learn as much as those receiving traditional face-to-face instruction. Research indicates that teaching and studying at a distance can be as effective as traditional instruction when the method and technologies used are appropriate to the instructional tasks with intensive learner-to-learner interactions, instructor-to-learner interactions and instructor-to-instructor interactions (Rahman, 2003a). With the convergence of high-speed computing, broadband networking and integrated telecommunication techniques, this new form of interactive multimedia technology has broadened the horizon of distance education systems through diversified innovative methodologies.


Innovations in the sector of information technology has led educators, scientists, researchers and technocrats to work together for betterment of the communities through effective utilization of available benefits. By far, the learners and educators are among the best beneficiaries at the frontiers of adoptive technologies. Education is no longer a time-bound, schedule-bound or domain-bound learning process. A learner can learn at prolonged pace with enough flexibility in the learning processes, and at the same time, an educator can provide services to the learners through much more flexible media, open to multiple choices.

Using diversified media (local-area network, wide-area network, fiber optics backbone, ISDN, T1, radio link and conventional telephone link), education has been able to reach remotely located learners at faster speed and lesser effort. At the very leading edge of the boomlet in mobile wireless data applications are those that involve sending multimedia data—images, and eventually video—over cellular networks (Blackwell, 2004).

Technology-integrated learning systems can interact with learners both in the mode similar to the conventional instructors and in new modes of information technology through simulations of logical and physical sequences. With fast networks and multimedia instruction-based workstations in distributed classrooms and distributed laboratories, with support from information dense storage media like write-able discs/CDs, structured interactions with multimedia instruction presentations can be delivered across both time and distance.

Several technologies exist within the realm of distance learning and the WWW that can facilitate self-directed, practice-centered learning and meet the challenges of educational delivery to the learner. Several forms of synchronous (real-time) and asynchronous (delayed-time) technology can provide communication between educator and learner that is stimulating and meets the needs of the learner.

The Web is 24 hours a day. Substantial benefits are obtained from using the Web as part of the service strategy (RightNow, 2003). Using the Web format, an essentially infinite number of hyperlinks may be created, enabling content provided by one member to be linked to relevant information provided by another. Any particular subject is treated as a collection of educational objects, like images, theories, problems, online quizzes and case studies. The Web browser interface lets the individual control how content is displayed, such as opening additional windows to other topics for direct comparison and contrast, or changing text size and placement (Tuthill, 1999).

Interactive and animated educational software combined with text, images and case simulations relevant to basic and advanced learning can be built to serve the learners’ community. Utilizing client server technology, Ethernet and LAN/WAN networks can easily span around campus areas and regions. Interactive modules can be created using Macromedia Authorware, Flash, Java applets and other available utilities. They can be migrated to html-based programming, permitting platform independence and widespread availability via WWW. A few technology implications are provided in Table 1 that show the transformation of educational paradigms. Macromedia Director can be used to create interactive materials for use on the WWW in addition to basic html editors.

Some applications of multimedia technologies are:

  • analog/digital video
  • audio conferencing
  • authoring software
  • CD-ROMs, drives
  • collaborative utility software
  • digital signal processors
  • hypermedia
  • laserdiscs
  • e-books
  • speech processors, synthesizers
  • animation
  • video conferencing
  • virtual reality
  • video capture
  • video cams

Introducing highly interactive multimedia technology as part of the learning curriculum can offer the best possibilities of development for the future of distance learning. The system should include a conferencing system, a dynamic Web site carrying useful information to use within the course, and access to discussion tools. Workstations are the primary delivery system, but the interaction process can be implemented through various methods as described in Table 2.

Furthermore, course materials used in interactive learning techniques may involve some flexible methods (with little or no interactions) as presented in Table 3.

Miller (1998) and Koyabe (1999) put emphasis on the increased use of multicasting in interactive learning and extensive usage of computers and network equipment in multicasting (routers, switches and high-end LAN equipment). The shaded cell in Table 4 represents real-time multicast applications supported by Real-Time Transport Protocol (RTTP), Real-Time Control Protocol (RTCP) or Real-Time Streaming Protocol (RTSP), while the un-shaded cells show multicast data applications supported by reliable (data) multicast protocols.

Finally, underneath these applications, above the infrastructure, asynchronous transfer mode (ATM) seems to be the most promising emerging technology enabling the development of integrated, interactive multimedia environment for distance education services appropriate for the developing country context. ATM offers economical broadband networking, combining high-quality, real-time video streams with high-speed data packets, even at constricted bandwidth. It also provides flexibility in bandwidth management within the communication protocol, stability in the content, by minimizing data noise, unwanted filter and cheaper delivery by reducing costs of networking.


New technologies have established esteemed standing in education and training despite various shortcomings in their performances. Technological innovations have been applied to improve the quality of education for many years. There are instances where applications of the technology had the potential to completely revolutionize the educational systems. Reformed usage of devices like radio, television and video recorders are among many as the starter. Interconnected computers with Internet are the non-concatenated connection between the traditional and innovative techniques. The recent addition of gadgets like personal digital assistants (PDAs), and software like virtual libraries could be some ways out to advanced researchers among many innovative methods on interactive learning.

When prospects of future usage of new technologies emerge in educational settings, there seems to be an innate acknowledgment that positive outcomes will be achieved and these outcomes will justify the expenses. When research is conducted to verify these assumptions, the actual outcomes may sometime be less than those expected. The research methodology behind interactive learning should be based on the notion that the interactivity be provided in the learning context to create environments where information can be shared, critically analyzed and applied, and along the process it becomes knowledge in the mind of the learner.

The use of interactive television as a medium for multimedia-based learning is an application of the technology that needs further investigation by the researchers. Research needs to study the impact of the interactions on the quality of the instructional delivery and develop guidelines for educators and instructional designers to maximize the advantage obtained from this mode of learning in broadcast, narrowcast and multicast modes.

Another emergent technology that appears to hold considerable promise for networked learning is the data broadcasting system (DBS). This technology provides the facility to insert a data stream into a broadcast television signal. Research needs to investigate the utility and efficacy of this technology for use in interactive learning sequences.

Current IMM context has found concrete ground and high potential in distance education methodologies. Further research needs to be carried out towards the cost-effective implementation of this technology. Emphasis should be given to study applications of the technology being used as a vehicle for the delivery of information and instruction and identifying existing problems. Research also needs to focus on developing applications that should make full use of the potentiality offered by this technology.

While security has been extensively addressed in the context of wired networks, the deployment of high-speed wireless data and multimedia communications ushers in new and greater challenges (Bhatkar, 2003). Broadband has emerged as the third wave of technology, offering high bandwidth connectivity across wide-area networks, opening enormous opportunities for information retrieval and interactive learning systems (Rahman, 2003b). However, until the browser software includes built-in support for various audio and video compression schemes, it needs cautious approach from the instructional designer to select the plug-in software that supports multiple platforms and various file formats. Using multimedia files that require proprietary plug-ins usually force the user to install numerous pieces of software in order to access multimedia elements.

It is pertinent that all the newly evolved technologies now exist that are necessary to cost effectively support the revolution in an IMM-based learning system so sorely needed by the developing world. Researchers should take the opportunity to initiate a revolution over the coming years. The main challenges lie in linking and coordinating the “bottom-up” piloting of concepts (at the design stage) with the “top-down” policy-making (at the implementation stage) and budgeting processes from the local (in modular format) to the global level (in repository concept).


Regardless of geographical locations, the future learning system cannot be dissociated with information and communication technologies. As technology becomes more and more ubiquitous and affordable, virtual learning carries the greatest potential to educate masses in the rural communities in anything and everything. This system of learning can and will revolutionize the education system at the global context, especially in the developing world.

The whole issue of the use of IMM in the learning process is the subject of considerable debate in academic arena. While many educators are embracing applications of multimedia technologies and computer-managed learning, they are advised to be cautious in their expectations and anticipations by their contemporary colleagues. Research in this aspect clearly indicate that media themselves do not influence learning, but it is the instructional design accompanying the media that influences the quality of learning.

The success of the technology in these areas is acknowledged, as is the current move within world-famous universities to embrace a number of the instructional methodologies into their on-campus education system. Much expectation is there for those educators concerned, as well as those wary of assuming that gains will be achieved from these methods and technologies. However, there is a need for appropriate research to support and guide the forms of divergence that have taken place during the last decade in the field of distance education.

One of the long-standing problems in delivering educational content via WWW has been the unpredictability and inconsistency of information transfer via Internet connections. Whether connection to the WWW is established over conventional telephone lines or high-speed LANs/WANs, often, communication is delayed or terminated because of bottlenecks at the server level, congestion in the line of transmission and many unexpected hangouts. Furthermore, the current state of technology does not allow for the optimal delivery of multimedia elements, including audio, video and animation at expected rate. Larger multimedia files require longer download times, which means that students have to wait for a much longer time to deal with these files. Even simple graphics may cause unacceptable delays in congested bandwidth. A CD/Web hybrid, a Web site on a CD, can serve as an acceptable solution in these situations.

Interactive Story Telling [next] [back] Interactive Multimedia Technologies for Distance Education in Developing Countries - INTRODUCTION, BACKGROUND, MAIN FOCUS, FUTURE TRENDS, CONCLUSION

User Comments

Your email address will be altered so spam harvesting bots can't read it easily.
Hide my email completely instead?

Cancel or

Vote down Vote up

almost 7 years ago

send me the multimedia representation

Vote down Vote up

over 5 years ago

Have you got a lecture about interactive cource.