Online Encyclopedia

EAR (common Teut.; O.E. are, Ger. Ohr...

Online Encyclopedia
Originally appearing in Volume V08, Page 794 of the 1911 Encyclopedia Britannica.
Spread the word: it!
EAR (common Teut.; O.E. are, Ger. Ohr, Du. oor, akin to Lat. auris, Gr. ovs), in anatomy, the organ of hearing. The human ear is divided into three, parts—external, middle and internal. The external ear consists of the pinna and the external auditory meatus. The pinna is composed of a yellow fibro-cartilaginous framework covered by skin, and has an external and an internal or cranial surface. Round the margin of the external surface in its upper three quarters is a rim called the helix (fig. 1, a), in which is often seen a little prominence n, External auditory meatus. o, Membrana tympani. p, Tympanum. 1, points to malleus. 2, to incus. 3, to stapes. 4, to cochlea. 5, 6, 7, the three semicircular canals. 8 and 9, facial and auditory nerves. known as Darwin's tubercle, representing the folded-over apex of a prick-eared ancestor. Concentric with the helix and nearer the meatus is the antihelix (b), which, above, divides into two . limbs to enclose the triangular fossa of the antihelix. Between the helix and the antihelix is the fossa of the helix. In front of the antihelix is the deep fossa known as the concha (fig. 1, d), and from the anterior part of this the meatus passes inward into the skull. Overlapping the meatus from in front is a flap called the tragus, and below and behind this is another smaller flap, the antitragus. The lower part of the pinna is the lobule (e), which contains no cartilage. On the cranial surface of the pinna elevations correspond to the concha and to the fossae a, Helix. b, Antitragus. c, Antihelix. d, Concha. e, Lobule. f, Mastoid process. g, Portio dura. h, Styloid process. k, Internal carotid artery. I, Eustachian tube. m, Tip of petrous process. of the helix and antihelix. The pinna can be slightly moved by the anterior, superior and posterior auricular muscles, and in addition to these there are four small intrinsic muscles on the .external surface, known as the helicis major and minor, the tragicus and the antitragicus, and two on the internal surface called the obliquus and transversus. The external auditory meatus (fig. I, n) is a tube running at first forward and upward, then a little backward and then forward and slightly downward; of course all the time it is also running inward until the tympanic membrane is reached. The tithe is about an inch long, its outer third being cartilaginous and its inner two-thirds bony. It is lined by skin in its whole length, the sweat glands of which are modified to secrete the wax or cerumen. The middle ear or tympanum (fig. I, p) is a small cavity in the temporal bone, the shape of which may perhaps be realized by imagining a hock bottle subjected to lateral pressure in such a way that its circular section becomes triangular, the base of the triangle being above. The neck of the bottle, also laterally compressed, will represent the Eustachian tube (fig. I, 1), which runs forward, inward and downward, to open into the nasopharynx, and so admits air into the tympanum. The bottom of the bottle will represent the posterior wall of the tympanum, from the upper part of which an opening leads backward into the mastoid antrum and so into the air-cells of the mastoid process. Lower down is a little pyramid which transmits the stapedius muscle, and at the base of this is a small opening known as the iter chordae posterius, for the chorda tympani to come through from the facial nerve. The roof is formed by a very thin plate of bone, called the tegmen tympani, which separates the cavity from the middle fossa of the skull. Below the roof the upper part of the tympanum is somewhat constricted off from the rest, and to this part the term " attic " is often applied. The floor is a mere groove formed by the meeting of the external and internal walls. The outer wall is largely occupied by the tympanic membrane (fig. I, o), which entirely separates the middle ear from the external auditory meatus; it is circular, and so placed that it slopes from above, downward and inward, and from behind, forward and inward. Externally it is lined by skin, internally by mucous membrane, while between the two is a firm fibrous membrane, convex inward about its centre to form the umbo. Just in front of the membrane on the outer wall is the Glaserian fissure leading to the glenoid cavity, and close to this is the canal of Huguier for the chorda tympani nerve. The inner wall shows a promontory caused by the cochlea and grooved by the tympanic plexus of nerves; above and behind it is the fenestra ovalis, while below and behind the fenestra rotunda is seen, closed by a membrane. Curving round, above and behind the promontory and fenestrae, is a ridge caused by the aqueductus Fallopii or canal for the facial nerve. The whole tympanum is about half an inch from before backward, and half an inch high, and is spanned from side to side by three small bones, of which the malleus (fig. 1,1) is the most external. This is attached by its handle to the umbo of the tympanic membrane, while its head lies in the attic and articulates posteriorly with the upper part of the next bone or incus (fig. i, 2). The long process of the incus runs downward and ends in a little knob called the os orbiculare, which is jointed on to the stapes or stirrup bone (fig. I, 3). The two branches of the stapes are anterior and posterior, while the footplate fits into the fenestra ovalis and is bound to it by a membrane. It will thus be seen that the stapes lies nearly at right angles to the long process of the incus. From the front of the malleus a slender process • projects forward into the Glaserian fissure, while from the back of the incus the posterior process is directed backward and is attached to the posterior wall of the tympanum. These two processes form a fulcrum by which the lever action of the malleus and incus is brought about, so that when the handle of the malleus is pushed in by the membrane the head moves out; the top of the incus, attached to it, also moves out, and the os orbiculare moves in, and so the stapes is pressed into the fenestra ovalis. The stapedius and tensor tympanic muscles, the latter of which enters the tympanum in a canal just above the Eustachian tube to be attached to the malleus, modify the movements of the ossicles. The mucous membrane lining the tympanum is continuous through the Eustachian tube with that of the naso-pharynx, and is reflected on to the ossicles, muscles and chorda tympani nerve. It is ciliated except where it covers the membrana tympani, ossicles and promontory; here it is stratified. The internal ear or labyrinth consists of a bony and a membranous part, the latter of which is contained in the former. The bony labyrinth is composed of the vestibule, the semi-circular canals and the cochlea. The vestibule lies just internal to the posterior part of the tympanum, and there would be a communication between the two, through the fenestra ovalis, were it not that the foot- plate of the stapes blocks the oc way. The inner wall of the vestibule is separated from the bottom of the internal auditory meatus by a plate of bone pierced by many foramina for branches of the auditory nerve (fig. r, 9), while at the lower part is the opening of the aqueductus vestibuli, by- means of which a communication is established with the posterior cranial fossa. Posteriorly the three semicircular canals open into the vestibule; of these the external (fig. i, 7) has two independent openings, but the superior and posterior (fig. I, 5 and 6) join together at one end and so have a common opening, while at their other ends they open separately. The three canals have therefore five openings into the vestibule instead of six. One end of each canal is dilated to form its ampulla. The superior semicircular canal is vertical, and the two pillars of its arch are nearly external and internal; the external canal is horizontal, its two pillars being anterior and posterior, while the convexity of the arch of the posterior canal is backward and its two pillars are superior and inferior. Anteriorly the vestibule leads into the cochlea (fig. r, 4), which is twisted two and a half times round a central pillar called the modiolus, the whole cochlea forming a rounded cone something like the shell of a snail though it is only about 5 mm. from base to apex. Projecting from the modiolus is a horizontal plate which runs round it from base to apex like a spiral staircase; this is known as the lamina spiralis, and it stretches neariy,half-way across the canal of the cochlea. At the summit it ends in a little hook named the hamulus. The modiolus is pierced by canals which transmit branches of the auditory nerve to the lamina spiralis. The membranous labyrinth lies in the bony labyrinth, but does not fill it; between the two is the fluid called perilymph, while inside the membranous labyrinth is the endolymph. In the bony vestibule lie two membranous bags, the saccule (fig. 2, S) in front, and the utricle (fig. 2, U) behind; each of these has a special patch or macula to which twigs of the auditory nerve are supplied, and in the mucous membrane of which specialized hair cells are found (fig. 3, p). Attached to the maculae are crystals of carbonate of lime called otoconia. The membranous semicircular canals are very much smaller in section than the bony; in the ampulla of each is a ridge, the crista acustica, which is covered by a mucous DC, Ductus cochlearis. dr, Ductus reuniens. S, Sacculus. U, Utriculus. dv, Ductus endolymphaticus. SC, Semicircular canals. (After Waldeyer.) membrane containing sensory hair cells like those in the maculae. All the canals open into the utricle. From the lower part of the saccule a small canal called the ductus endolymphaticus (fig. 2, dv) runs into the aqueductus vestibuli; it is soon joined by a small duct from the utricle, and ends, close to the dura mater of the posterior fossa of the cranium, as the saccus endolymphaticus, which may have minute perforations through which the endolymph can pass. Anteriorly the saccule communicates with the membranous cochlea or scala media by a short ductus reuniens (fig. 2, dr). A section through each turn of the cochlea shows the bony lamina spiralis, already noticed, which is continued right across the canal by the basilar membrane (fig. 4, bm), thus cutting the canal into an upper and lower half and connected with the outer wall by the strong spiral ligament (fig. 4, sl). Near the free end of the Iamina spiralis another membrane called the membrane of Reissner (fig. 4, mR) is attached, and runs outward and upward to the outer wall, taking a triangular slice out of the upper half of the section. There are now three canals seen in section, the upper of which is the scala vestibuli (fig. 4, SV), the middle and outer the scala media, ductus cochlearis or true membranous cochlea (fig. 4, DC), while the lower is the scala tympani (fig. 4, ST). The scala vestibuli and scala tympani communicate at the apex of the cochlea by an opening known as the helicotrema, so that the perilymph can here pass from one canal to the other. At the base of the cochlea the m, Modiolus. bm, Basilar membrane. 0, Outer wall of cochlea. cs, Crista spiralis. SV, Scala vestibuli. sl, Spiral ligament. ST, Scala tympani. sg, Spiral ganglion of auditory DC, Ductus cochlearis. nerve. mR, Membrane of Reissner. oc, Organ of Corti. perilymph in the scala vestibuli is continuous with that in the vestibule, but that in the scala tympani bathes the inner surface of the membrane stretched across the fenestra rotunda, and also communicates with the subarachnoid space through the aqueductus cochleae, which opens into the posterior cranial fossa. The scala media containing endolymph communicates, as has been shown, with the saccule through the canalis reuniens, while, of the apex of the cochlea, it ends in a blind extremity of consider-able morphological interest called the lagena. The scala media contains the essential organ of hearing or organ of Corti (fig. 4, oc), which lies upon the inner part of the basilar membrane; it consists of a tunnel bounded on each side of the inner and outer rods of Corti; on each side of these are the inner and outer hair cells, between the latter of which are found the supporting cells of Deiters. Most externally are the large cells of Hensen. A delicate membrane called the lamina reticularis covers the top of all these, and is pierced by the hairs of the hair cells, while above this is the loose membrana tectoria attached to the periosteum of the lamina spiralis, near its tip, internally, and possibly to some of Deiter's cells externally. The cochlear branch of the auditory nerve enters the lamina spiralis, where a spiral ganglion (fig. 4, sg) is developed on it; after this it is distributed to the inner and outer hair cells. For further details see Text-Book of Anatomy, edited by D. J. Cunningham (Edinburgh, 1906); Quain's Elements of Anatomy (London, 1893) ; Gray's Anatomy (London, 1905) ; A Treatise on Anatomy, edited by H. Morris (London, 1902) ; A Text-Book of Human Anatomy, by A. Macalister (London, 1889). Embryology.—The pinna is formed from six tubercles which appear round the dorsal end of the hyomandibular cleft or, more strictly speaking, pouch. Those for the tragus and anterior part of the helix belong to the first or mandibular arch, while those for the antitragus, antihelix and lobule come from the second or hyoid arch. The tubercle for the helix is dorsal to the end of the cleft where the two arches join. The external auditory meatus, tympanum and Eustachian tube are remains of the hyomandibular cleft, the membrana tympani being a remnant of the cleft membrane and therefore lined by ectoderm outside and entoderm inside. The origin of the ossicles is very doubtful. H. Gadow's view, which is one of the latest, is that all three are derived from the hyomandibular plate which connects the dorsal ends of the hyoid and mandibular bars (Anatomischer Anzeiger, Bd. xis., 1901, p. 396). Other papers which should be consulted are those of E. Gaupp, Anatom. Hefte, Ergebnisse, Bd. 8, 1898, p. 991, and J. A. Hammar, Archiv f. mikr. Anat. lix., 1902. These papers will give a clue to the immense literature of the subject. The internal ear first appears as a pit from the cephalic ectoderm, the mouth of which in Man and other mammals closes up, so that a pear-shaped cavity is left. The stalk of the pear which is nearest the point of invagination is called the recessus labyrinthi, and this, after losing its connexion with the surface of the embryo, grows backward toward the posterior cranial fossa and becomes the ductus endolymphaticus. The lower part of the vesicle grows forward and becomes the cochlea, while from the upper part three hollow circular plates grow out, the central parts of which disappear, leaving the margin as the semicircular canals. Subsequently constrictions appear in the vesicle marking off the saccule and utricle. From the surrounding Outer rod of Corti Inner rod of Corti Outer hair cells Inner hair cell Hensen's stripe Membrana tectoria Sulcus spiralis internus Cells of Hessen Membrana basilaris Cells of Claudius Inner spiral fasciculus Vas spirale Tunnel of Corti (From R. Howden—Cunningham's Text-Book of Anatomy.) of Cochlea (Retzius). mesoderm the petrous bone is formed by a process of chondrification and ossification. See W. His, Junr., Archie f. Anat. and Phys., 1889, supplement, p. I ; also Streeter, Am. Journ. of Anat. vi., 1907. Comparative Anatomy.—The ectodermal inpushing of the internal ear has probably a common origin with the organs of the lateral line of fish. In the lower forms the ductus endolymphaticus retains its communication with the exterior on the dorsum of the head, and in some Elasmobranchs the opening is wide enough to allow the passage of particles of sand into the saccule. It is probable that this duct is the same which, taking a different direction and losing its communication with the skin, abuts on the posterior cranial fossa of higher forms (see Rudolf Krause, " Die Entwickelung des Aq. vestibuli seu d. Endelymphaticus," Anat. Anzeiger, Bd. xix., 1901, p. 49). In certain Teleostean fishes the swim bladder forms a secondary communication with the internal ear by means of special ossicles (see G. Ridewood, Journ. Anat. Es' Phys. vol. xxvi.). Among the Cyclostomata the external semicircular canals are wanting; Petromyzon has the superior and posterior only, while in Myxine these two appear to be fused so that only one is seen. In higher types the three canals are constant. Concretions of carbonate of lime are present in the internal ears of almost all vertebrates; when these are very small they are called otoconia, but when, as in most of the teleostean fishes, they form huge concretions, they are spoken of as otoliths. One shark, Squatina, has sand instead of otoconia (C. Stewart, Journ. Linn. Society, xxix. 409). The utricle, saccule, semicircular canals, ductus endolymphaticus and a short lagena are the only parts of the ear present in fish. The Amphibia have an important sensory area at the base of the lagena known as the macula acustica basilaris, which is probably the first rudiment of a true cochlea. The ductus endolymphaticus has lost its communication with the skin, but it is frequently prolonged into the skull and along the spinal canal, from which it protrudes, through the intervertebral foramina, bulging into the coelom. This is the case in the common frog (A. Coggi, Anat. Anz. 5. Jahrg., 189o, p. 177). In this class the tympanum and Eustachian tube are first developed; the membrana tympani lies flush with the skin of the side of the head, and the sound-waves are transmitted from it to the internal ear by a single bony rod—the columella. In the Reptilia the internal ear passes through a great range of development. In the Chelonia and Ophidia the cochlea is as rudimentary as in the Amphibia, but in the higher forms (Crocodilia) there is a lengthened and slightly twisted cochlea, at the end of which the lagena forms a minute terminal appendage. At the same time indications of the scalae tympani and vestibuli appear. As in the Amphibia the ductus endolymphaticus sometimes extends into the cranial cavity and on into other parts of the body. Snakes have no tympanic membrane. In the birds the cochlea resembles that of the crocodiles, but the posterior semicircular canal is above the superior where they join one another. In certain lizards and birds (owls) a small fold of skin represents the first appearance of an external ear. In the monotremes the internal ear is reptilian in its arrangement, but above them the mammals always have a spirally twisted cochlea, the number of turns varying from one and a half in the Cetacea to nearly five in the rodent Coelogenys. The lagena is reduced to a mere vestige. The organ of Corti is peculiar to mammals, and the single columella of the middle ear is replaced by the three ossicles already described in Man (see Alban Doran, " Morphology of the Mammalian Ossicula auditus," Proc. Linn. Soc., 1876-1877, xiii. 185; also Trans. Linn. Soc. 2nd Ser. Zool. i. 371). In some mammals, especially Carnivora, the middle ear is enlarged to form the tympanic bulla, but the mastoid cells are peculiar to Man. For further details see G. Retzius, Das Gehororgan der Wirbelthiere (Stockholm, 1881–1884); Catalogue of the Museum of the R. College of Surgeons—Physiological Series, vol. iii. (London, 1906); R. Wiedersheim's Vergleichende Anatomie der Wirbeltiere (Jena, 1902). (F. G. P.)
End of Article: EAR (common Teut.; O.E. are, Ger. Ohr, Du. oor, akin to Lat. auris, Gr. ovs)

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click and select "copy." Paste it into a website, email, or other HTML document.